General Information of the Disease (ID: DIS00073)
Name
Status epilepticus
ICD
ICD-11: 8A66
Full List of Target(s) of This Ferroptosis-centered Disease
Prostaglandin G/H synthase 2 (PTGS2)
In total 1 item(s) under this target
Experiment 1 Reporting the Ferroptosis-centered Disease Response by This Target [1]
Target for Ferroptosis Marker
Responsed Disease Epilepsy [ICD-11: 8A66]
Responsed Drug Penicillamine Approved
Responsed Regulator Aquaporin-11 (AQP11) Suppressor
Pathway Response Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
In Vitro Model HT22 cells Normal Mus musculus CVCL_0321
In Vivo Model
Male C57BL/6J mice (6-8 weeks of age, weighing 18-22 g) were provided by at the Centre for Animals of Central South University (Changsha, China). To prepare the seizure mouse model, the mice underwent the intrahippocampal injection of KA as described in our previous investigation. For short, mice were anesthetized with sodium phenobarbital (50 mg/kg, i.p.) and carefully placed on a stereotaxic apparatus. Then, KA (1 uL, 250 ng/uL dissolved in saline) was stereotactically injected into the hippocampus according to the following coordinates: anteroposterior -2.0 mm; lateral -1.3 mm; dorsoventral -1.2 mm. After injection, the infusion needle was kept in place for 5-10 min to avoid liquid reflux. Mice in the control group underwent the same surgical procedure but received injection with an equal volume of phosphate buffered saline (PBS) instead of KA.

    Click to Show/Hide
Response regulation D-penicillamine (DPA) can be repurposed to cure seizure disorders such as epilepsy. Furthermore, ferroptosis-associated indices including acyl-coA synthetase long chain family member 4 (ACSL4), prostaglandin-endoperoxide synthase 2 (Ptgs2) gene and lipid peroxide (LPO) level were significantly decreased in KA mouse model after DPA treatment. The effects of DPA on ferroptosis process are dependent upon Aqp11.
Phospholipid hydroperoxide glutathione peroxidase (GPX4)
In total 4 item(s) under this target
Experiment 1 Reporting the Ferroptosis-centered Disease Response by This Target [2]
Target for Ferroptosis Suppressor
Responsed Disease Epilepsy [ICD-11: 8A66]
Responsed Drug Seratrodast Discontinued in Phase 3
Responsed Regulator Mitogen-activated protein kinase 8 (MAPK8) Driver
Pathway Response Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
In Vitro Model HT22 cells Normal Mus musculus CVCL_0321
In Vivo Model
Drugs were dissolved in vehicle (0.1% DMSO + 20% PEG 300 + 0.5% CMC-Na + ddH2O). Mice in Control and PTZ groups were administered for five days with an equivalent volume of vehicle. PTZ-induced seizure model was done for the subsequent 1 h after the last administration of drugs. We performed a preliminary doseresponse trial, the dose of 60 mg/kg was established as being sufficient to trigger seizures with lower mortality and chosen as the optimal dose. One mouse in PTZ group was dead due to a severe seizure. At the end of the experiment, the mice were anesthetized or euthanized. For histopathological studies, the mice were anesthetized and intracardially perfused with 0.9% saline, followed by 0.4% paraformaldehyde for fixation of the brain. For immunoblot analysis, the hippocampus was rapidly isolated.

    Click to Show/Hide
Response regulation Seratrodast could reduce lipid ROS production, regulate the system xc-/glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis, and inhibit JNK (MAPK8) phosphorylation and p53 expression. JNK can directly or indirectly modulate the expression and activation of p53, which could regulate ferroptosis through inhibition of SLC7A11 transcription. Seratrodast increased the latency of seizures and reduced seizure duration in pentylenetetrazole-induced seizures.
Experiment 2 Reporting the Ferroptosis-centered Disease Response by This Target [3]
Target for Ferroptosis Suppressor
Responsed Disease Epilepsy [ICD-11: 8A66]
Responsed Drug Apigenin Investigative
Responsed Regulator Cellular tumor antigen p53 (TP53) Driver
Pathway Response Ferroptosis hsa04216
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
In Vitro Model SH-SY5Y cells Neuroblastoma Homo sapiens CVCL_0019
In Vivo Model
5-weeks-old kainate (KA)-induced BALB/c nude mice, a widely used epilepsy mouse model, were performed with intraperitoneal (i.p.) injection of KA (6 mg/kg). Pre-treatment 21 with antioxidant apigenin (60 mg/Kg, 2 days) or post-treatment with apigenin (60 mg/Kg, 1 day), mice were injected with KA (6 mg/kg) via intraperitoneal (i.p.) injection, and then HCP (0.5 mg/Kg) were injected by intravenous (i.v.) injection. In vivo and Ex vivo fluorescence images of relative ClO levels in mice brains 5, 15, 30, 45, and 60 min post injection of HCP were further performed by using the IVIS Spectrum imaging system (Nanjing University) with an excitation filter of 430 nm and the collection wavelength range is from 500-600 nm.

    Click to Show/Hide
Response regulation Apigenin can efficiently reduce the expression of intracellular MPO and increase the levels of GPX4 and SIRT1, thereby conferring neuroprotection through regulation of kainic acid (KA)-induced ferroptosis. And the level of Ac-p53 inside the brains treated with apigenin was down-regulated, suggesting that the p53-mediated ferroptosis pathway might be blocked. Overall, apigenin was screened and confirmed as an efficient lead compound for epilepsy prevention and treatment.
Experiment 3 Reporting the Ferroptosis-centered Disease Response by This Target [4]
Target for Ferroptosis Suppressor
Responsed Disease Epilepsy [ICD-11: 8A66]
Responsed Drug Quercetin Investigative
Responsed Regulator NAD-dependent protein deacetylase sirtuin-1 (SIRT1) Suppressor
Pathway Response Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
In Vitro Model HT22 cells Normal Mus musculus CVCL_0321
In Vivo Model
Male C57BL/6J mice (6-8 weeks of age, weighing 18-22 g) were obtained from Gempharmatech Co., Ltd (Changzhou, China). All mice were housed in cages with standard laboratory conditions: a consistent temperature of 24 , a 12 h light/dark cycle, and free access to water and food. The mice were randomized into four groups: 1) the KA group (n = 6), injected intraperitoneally with 20 mg/kg KA, as described in a previous study; while 2) the control group (n = 6), injected intraperitoneally with an equal volume of PBS; 3) the KA + QCT group (n = 6): this group was givenintragastric administrationof 50 mg/kg of QCT once daily for 21 days before KA injection based on the literature; and 4) the KA+ferrostatin1 (Fer-1) group (n = 6), injected intraperitoneally with a well-known ferroptosis inhibitor (3 mg/kg Fer-1) for 21 days before KA administration, as described in a previous study.

    Click to Show/Hide
Response regulation The association between the Nrf2-mediated ferroptosis pathway and seizures in a clinical setting. Quercetin effectively protects against seizure-induced neuron death in vivo and in vitro and alleviates cognitive function impairment via the SIRT1/Nrf2/SLC7A11/GPX4 pathway.
Experiment 4 Reporting the Ferroptosis-centered Disease Response by This Target [7]
Target for Ferroptosis Suppressor
Responsed Disease Epilepsy [ICD-11: 8A66]
Responsed Drug Lapatinib Investigative
Pathway Response Fatty acid metabolism hsa01212
Ferroptosis hsa04216
Glutathione metabolism hsa00480
Cell Process Cell ferroptosis
In Vitro Model HT22 cells Normal Mus musculus CVCL_0321
In Vivo Model
Male C57BL/6J mice (6-8 weeks of age, weighing 18-22 g) were obtained from the Animal Unit of Central South University. After anesthetization by intraperitoneal injection of 10% chloral hydrate (v/w), the mice were fixed on a stereotactic instrument and stereotactically injected with KA (250 ng/ul) into the hippocampus. KA (1 ul) was injected slowly for 5 min and positioned in the hippocampus (AP-2.0 mm, ML-1.3 mm, V-1.2 mm). After injection, the needle was left in place for additional 10 min to avoid drug reflux. The mice were randomly divided into six experimental groups: 1) sham operation group that received 1 ul PBS injection (5 animals); 2) mice were pretreated p. o. for 21 days on a twice-daily schedule with 100 mg/kg lapatinib alone before PBS administration (5 animals); 3) KA-treated group was injected KA (5 animals); 4) and 5) lapatinib groups were received with 50 mg/kg (5 animals) and 100 mg/kg (5 animals) lapatinib for 21 days before KA treatment, respectively; 6) this group was given i. p. for 14 days with ferroptosis inhibitor (3 mg/kg Fer-1) before KA administration.

    Click to Show/Hide
Response regulation Lapatinib exerted neuroprotection via restoring glutathione peroxidase 4 (GPX4). Treatment with GPX4 inhibitor ras-selective lethal small molecule 3 (RSL3) abrogated its anti-ferroptotic potential. It is concluded that lapatinib has neuroprotective potential against epileptic seizures via suppressing GPX4-mediated ferroptosis.
Nuclear factor erythroid 2-related factor 2 (NFE2L2)
In total 1 item(s) under this target
Experiment 1 Reporting the Ferroptosis-centered Disease Response by This Target [4]
Target for Ferroptosis Marker/Suppressor
Responsed Disease Epilepsy [ICD-11: 8A66]
Responsed Drug Quercetin Investigative
Responsed Regulator NAD-dependent protein deacetylase sirtuin-1 (SIRT1) Suppressor
Pathway Response Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
In Vitro Model HT22 cells Normal Mus musculus CVCL_0321
In Vivo Model
Male C57BL/6J mice (6-8 weeks of age, weighing 18-22 g) were obtained from Gempharmatech Co., Ltd (Changzhou, China). All mice were housed in cages with standard laboratory conditions: a consistent temperature of 24 , a 12 h light/dark cycle, and free access to water and food. The mice were randomized into four groups: 1) the KA group (n = 6), injected intraperitoneally with 20 mg/kg KA, as described in a previous study; while 2) the control group (n = 6), injected intraperitoneally with an equal volume of PBS; 3) the KA + QCT group (n = 6): this group was givenintragastric administrationof 50 mg/kg of QCT once daily for 21 days before KA injection based on the literature; and 4) the KA+ferrostatin1 (Fer-1) group (n = 6), injected intraperitoneally with a well-known ferroptosis inhibitor (3 mg/kg Fer-1) for 21 days before KA administration, as described in a previous study.

    Click to Show/Hide
Response regulation The association between the Nrf2-mediated ferroptosis pathway and seizures in a clinical setting. Quercetin effectively protects against seizure-induced neuron death in vivo and in vitro and alleviates cognitive function impairment via the SIRT1/Nrf2/SLC7A11/GPX4 pathway.
Long-chain-fatty-acid--CoA ligase 4 (ACSL4)
In total 1 item(s) under this target
Experiment 1 Reporting the Ferroptosis-centered Disease Response by This Target [1]
Target for Ferroptosis Driver
Responsed Disease Epilepsy [ICD-11: 8A66]
Responsed Drug Penicillamine Approved
Responsed Regulator Aquaporin-11 (AQP11) Suppressor
Pathway Response Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
In Vitro Model HT22 cells Normal Mus musculus CVCL_0321
In Vivo Model
Male C57BL/6J mice (6-8 weeks of age, weighing 18-22 g) were provided by at the Centre for Animals of Central South University (Changsha, China). To prepare the seizure mouse model, the mice underwent the intrahippocampal injection of KA as described in our previous investigation. For short, mice were anesthetized with sodium phenobarbital (50 mg/kg, i.p.) and carefully placed on a stereotaxic apparatus. Then, KA (1 uL, 250 ng/uL dissolved in saline) was stereotactically injected into the hippocampus according to the following coordinates: anteroposterior -2.0 mm; lateral -1.3 mm; dorsoventral -1.2 mm. After injection, the infusion needle was kept in place for 5-10 min to avoid liquid reflux. Mice in the control group underwent the same surgical procedure but received injection with an equal volume of phosphate buffered saline (PBS) instead of KA.

    Click to Show/Hide
Response regulation D-penicillamine can be repurposed to cure seizure disorders such as epilepsy. D-penicillamine reveals the amelioration of seizure-induced neuronal injury via inhibiting Aqp11-dependent ferroptosis. Furthermore, ferroptosis-associated indices including acyl-coA synthetase long chain family member 4 (ACSL4), prostaglandin-endoperoxide synthase 2 (Ptgs2) gene and lipid peroxide (LPO) level were significantly decreased in KA mouse model after DPA treatment.
Cystine/glutamate transporter (SLC7A11)
In total 3 item(s) under this target
Experiment 1 Reporting the Ferroptosis-centered Disease Response by This Target [2]
Target for Ferroptosis Suppressor
Responsed Disease Epilepsy [ICD-11: 8A66]
Responsed Drug Seratrodast Discontinued in Phase 3
Responsed Regulator Mitogen-activated protein kinase 8 (MAPK8) Driver
Pathway Response Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
In Vitro Model HT22 cells Normal Mus musculus CVCL_0321
In Vivo Model
Drugs were dissolved in vehicle (0.1% DMSO + 20% PEG 300 + 0.5% CMC-Na + ddH2O). Mice in Control and PTZ groups were administered for five days with an equivalent volume of vehicle. PTZ-induced seizure model was done for the subsequent 1 h after the last administration of drugs. We performed a preliminary doseresponse trial, the dose of 60 mg/kg was established as being sufficient to trigger seizures with lower mortality and chosen as the optimal dose. One mouse in PTZ group was dead due to a severe seizure. At the end of the experiment, the mice were anesthetized or euthanized. For histopathological studies, the mice were anesthetized and intracardially perfused with 0.9% saline, followed by 0.4% paraformaldehyde for fixation of the brain. For immunoblot analysis, the hippocampus was rapidly isolated.

    Click to Show/Hide
Response regulation Seratrodast could reduce lipid ROS production, regulate the system xc-/glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis, and inhibit JNK (MAPK8) phosphorylation and p53 expression. JNK can directly or indirectly modulate the expression and activation of p53, which could regulate ferroptosis through inhibition of SLC7A11 transcription. Seratrodast increased the latency of seizures and reduced seizure duration in pentylenetetrazole-induced seizures.
Experiment 2 Reporting the Ferroptosis-centered Disease Response by This Target [2]
Target for Ferroptosis Suppressor
Responsed Disease Epilepsy [ICD-11: 8A66]
Responsed Drug Seratrodast Discontinued in Phase 3
Responsed Regulator Cellular tumor antigen p53 (TP53) Driver
Pathway Response Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
In Vitro Model HT22 cells Normal Mus musculus CVCL_0321
In Vivo Model
Drugs were dissolved in vehicle (0.1% DMSO + 20% PEG 300 + 0.5% CMC-Na + ddH2O). Mice in Control and PTZ groups were administered for five days with an equivalent volume of vehicle. PTZ-induced seizure model was done for the subsequent 1 h after the last administration of drugs. We performed a preliminary doseresponse trial, the dose of 60 mg/kg was established as being sufficient to trigger seizures with lower mortality and chosen as the optimal dose. One mouse in PTZ group was dead due to a severe seizure. At the end of the experiment, the mice were anesthetized or euthanized. For histopathological studies, the mice were anesthetized and intracardially perfused with 0.9% saline, followed by 0.4% paraformaldehyde for fixation of the brain. For immunoblot analysis, the hippocampus was rapidly isolated.

    Click to Show/Hide
Response regulation Seratrodast could reduce lipid ROS production, regulate the system xc-/glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis, and inhibit JNK (MAPK8) phosphorylation and p53 expression. JNK can directly or indirectly modulate the expression and activation of p53, which could regulate ferroptosis through inhibition of SLC7A11 transcription. Seratrodast increased the latency of seizures and reduced seizure duration in pentylenetetrazole-induced seizures in Epilepsy.
Experiment 3 Reporting the Ferroptosis-centered Disease Response by This Target [4]
Target for Ferroptosis Suppressor
Responsed Disease Epilepsy [ICD-11: 8A66]
Responsed Drug Quercetin Investigative
Responsed Regulator NAD-dependent protein deacetylase sirtuin-1 (SIRT1) Suppressor
Pathway Response Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
In Vitro Model HT22 cells Normal Mus musculus CVCL_0321
In Vivo Model
Male C57BL/6J mice (6-8 weeks of age, weighing 18-22 g) were obtained from Gempharmatech Co., Ltd (Changzhou, China). All mice were housed in cages with standard laboratory conditions: a consistent temperature of 24 , a 12 h light/dark cycle, and free access to water and food. The mice were randomized into four groups: 1) the KA group (n = 6), injected intraperitoneally with 20 mg/kg KA, as described in a previous study; while 2) the control group (n = 6), injected intraperitoneally with an equal volume of PBS; 3) the KA + QCT group (n = 6): this group was givenintragastric administrationof 50 mg/kg of QCT once daily for 21 days before KA injection based on the literature; and 4) the KA+ferrostatin1 (Fer-1) group (n = 6), injected intraperitoneally with a well-known ferroptosis inhibitor (3 mg/kg Fer-1) for 21 days before KA administration, as described in a previous study.

    Click to Show/Hide
Response regulation The association between the Nrf2-mediated ferroptosis pathway and seizures in a clinical setting. Quercetin effectively protects against seizure-induced neuron death in vivo and in vitro and alleviates cognitive function impairment via the SIRT1/Nrf2/SLC7A11/GPX4 pathway.
Unspecific Target
In total 3 item(s) under this target
Experiment 1 Reporting the Ferroptosis-centered Disease Response by This Target [2]
Responsed Disease Epilepsy [ICD-11: 8A66]
Responsed Drug Seratrodast Discontinued in Phase 3
Responsed Regulator Mitogen-activated protein kinase 8 (MAPK8) Driver
Pathway Response Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
In Vitro Model HT22 cells Normal Mus musculus CVCL_0321
In Vivo Model
Drugs were dissolved in vehicle (0.1% DMSO + 20% PEG 300 + 0.5% CMC-Na + ddH2O). Mice in Control and PTZ groups were administered for five days with an equivalent volume of vehicle. PTZ-induced seizure model was done for the subsequent 1 h after the last administration of drugs. We performed a preliminary doseresponse trial, the dose of 60 mg/kg was established as being sufficient to trigger seizures with lower mortality and chosen as the optimal dose. One mouse in PTZ group was dead due to a severe seizure. At the end of the experiment, the mice were anesthetized or euthanized. For histopathological studies, the mice were anesthetized and intracardially perfused with 0.9% saline, followed by 0.4% paraformaldehyde for fixation of the brain. For immunoblot analysis, the hippocampus was rapidly isolated.

    Click to Show/Hide
Response regulation Seratrodast could reduce lipid ROS production, regulate the system xc-/glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis, and inhibit JNK (MAPK8) phosphorylation and p53 expression. JNK can directly or indirectly modulate the expression and activation of p53, which could regulate ferroptosis through inhibition of SLC7A11 transcription. Seratrodast increased the latency of seizures and reduced seizure duration in pentylenetetrazole-induced seizures in Epilepsy.
Experiment 2 Reporting the Ferroptosis-centered Disease Response by This Target [3]
Responsed Disease Epilepsy [ICD-11: 8A66]
Responsed Drug Apigenin Investigative
Responsed Regulator NAD-dependent protein deacetylase sirtuin-1 (SIRT1) Suppressor
Pathway Response Ferroptosis hsa04216
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
In Vitro Model SH-SY5Y cells Neuroblastoma Homo sapiens CVCL_0019
In Vivo Model
5-weeks-old kainate (KA)-induced BALB/c nude mice, a widely used epilepsy mouse model, were performed with intraperitoneal (i.p.) injection of KA (6 mg/kg). Pre-treatment 21 with antioxidant apigenin (60 mg/Kg, 2 days) or post-treatment with apigenin (60 mg/Kg, 1 day), mice were injected with KA (6 mg/kg) via intraperitoneal (i.p.) injection, and then HCP (0.5 mg/Kg) were injected by intravenous (i.v.) injection. In vivo and Ex vivo fluorescence images of relative ClO levels in mice brains 5, 15, 30, 45, and 60 min post injection of HCP were further performed by using the IVIS Spectrum imaging system (Nanjing University) with an excitation filter of 430 nm and the collection wavelength range is from 500-600 nm.

    Click to Show/Hide
Response regulation Apigenin can efficiently reduce the expression of intracellular MPO and increase the levels of GPX4 and SIRT1, thereby conferring neuroprotection through regulation of kainic acid (KA)-induced ferroptosis. And the level of Ac-p53 inside the brains treated with apigenin was down-regulated, suggesting that the p53-mediated ferroptosis pathway might be blocked. Overall, apigenin was screened and confirmed as an efficient lead compound for epilepsy prevention and treatment.
Experiment 3 Reporting the Ferroptosis-centered Disease Response by This Target [3]
Responsed Disease Epilepsy [ICD-11: 8A66]
Responsed Drug Kainic acid Investigative
Pathway Response Ferroptosis hsa04216
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
In Vitro Model SH-SY5Y cells Neuroblastoma Homo sapiens CVCL_0019
In Vivo Model
5-weeks-old kainate (KA)-induced BALB/c nude mice, a widely used epilepsy mouse model, were performed with intraperitoneal (i.p.) injection of KA (6 mg/kg). Pre-treatment 21 with antioxidant apigenin (60 mg/Kg, 2 days) or post-treatment with apigenin (60 mg/Kg, 1 day), mice were injected with KA (6 mg/kg) via intraperitoneal (i.p.) injection, and then HCP (0.5 mg/Kg) were injected by intravenous (i.v.) injection. In vivo and Ex vivo fluorescence images of relative ClO levels in mice brains 5, 15, 30, 45, and 60 min post injection of HCP were further performed by using the IVIS Spectrum imaging system (Nanjing University) with an excitation filter of 430 nm and the collection wavelength range is from 500-600 nm.

    Click to Show/Hide
Response regulation Apigenin can efficiently reduce the expression of intracellular MPO and increase the levels of GPX4 and SIRT1, thereby conferring neuroprotection through regulation of kainic acid (KA)-induced ferroptosis. And the level of Ac-p53 inside the brains treated with apigenin was down-regulated, suggesting that the p53-mediated ferroptosis pathway might be blocked. Overall, apigenin was screened and confirmed as an efficient lead compound for epilepsy prevention and treatment.
Polyunsaturated fatty acid lipoxygenase ALOX15 (ALOX15)
In total 2 item(s) under this target
Experiment 1 Reporting the Ferroptosis-centered Disease Response by This Target [5]
Target for Ferroptosis Driver
Responsed Disease Epilepsy [ICD-11: 8A66]
Responsed Drug Alpha-Tocopherol Investigative
Pathway Response Fatty acid metabolism hsa01212
Ferroptosis hsa04216
Cell Process Cell ferroptosis
In Vitro Model hBCs (Brain cells)
In Vivo Model
Sixty-four male Sprague-Dawley (SD) rats (5-6 weeks old) were provided by Shandong Jinan Pengyue Experimental Animal Breeding Co. Ltd. Rats were randomly divided into four groups (n = 16/group): (i) Control group rats received normal saline (NS) administered intraperitoneally (i.p.); (ii) PTZ group rats received PTZ (35 mg/kg, i.p.; Sigma-Aldrich, USA) [7]; (iii) Vitamin E+PTZ group rats received vitamin E (200 mg/kg, i.p.; Sigma-Aldrich, St. Louis, MO, USA) 30 min before PTZ injection; (iv) Fer-1+PTZ group rats received Fer-1 (2.5 umol/g, i.p.; Selleck, Houston, TX, USA) 30 min before PTZ injection. All drugs were administered every other day for a total of 15 injections.

    Click to Show/Hide
Response regulation Vitamin E treatment was associated with decreased epileptic grade, seizure latency, and number of seizures in the PTZ-kindled epileptic model. Vitamin E treatment also decreased 15-LOX expression, inhibited MDA and iron accumulation, and increased GPX4 and GSH expression. In conclusion, vitamin E can reduce neuronal ferroptosis and seizures by inhibiting 15-LOX expression.
Experiment 2 Reporting the Ferroptosis-centered Disease Response by This Target [6]
Target for Ferroptosis Driver
Responsed Disease Posttraumatic epileptic seizures [ICD-11: 8A66]
Responsed Drug Baicalein Investigative
Pathway Response Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
In Vitro Model HT22 cells Normal Mus musculus CVCL_0321
In Vivo Model
All adult male C57/BL6 mice weighing 18-22g were obtained from the Experimental Animal Center of Central South University, China. Animals were randomly divided into six groups as follows: 1) control group (n = 6) was given vehicle intracranial injection (PBS 5 ul); 2) FeCl3 group (n = 6) was given 5 ul 50 mM FeCl3; 3) and 4) baicalein groups were pretreated with baicalein 50 mg/kg (n = 6) and 100 mg/kg (n = 6) 30 min prior to FeCl3 administration, respectively; 5) ferroptosis inhibitor group (n = 6) was administered continuously with 10 mg/kg Lipo-1 3 d prior to FeCl3 administration; and 6) baicalein administration group (n = 6) was given 100 mg/kg baicalein once by intraperitoneal injection 30 min prior to 5 ul PBS administration.

    Click to Show/Hide
Response regulation Baicalein, as a naturel bioactive compound, could ameliorate behavioral seizures and play a key neuroprotective role in FeCl3-induced posttraumatic epileptic seizures through inhibiting ferroptosis and its neuroprotection might be related to suppression of 12-LOX/15-LOX.
Polyunsaturated fatty acid lipoxygenase ALOX12 (ALOX12)
In total 1 item(s) under this target
Experiment 1 Reporting the Ferroptosis-centered Disease Response by This Target [6]
Target for Ferroptosis Driver
Responsed Disease Posttraumatic epileptic seizures [ICD-11: 8A66]
Responsed Drug Baicalein Investigative
Pathway Response Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
In Vitro Model HT22 cells Normal Mus musculus CVCL_0321
In Vivo Model
All adult male C57/BL6 mice weighing 18-22g were obtained from the Experimental Animal Center of Central South University, China. Animals were randomly divided into six groups as follows: 1) control group (n = 6) was given vehicle intracranial injection (PBS 5 ul); 2) FeCl3 group (n = 6) was given 5 ul 50 mM FeCl3; 3) and 4) baicalein groups were pretreated with baicalein 50 mg/kg (n = 6) and 100 mg/kg (n = 6) 30 min prior to FeCl3 administration, respectively; 5) ferroptosis inhibitor group (n = 6) was administered continuously with 10 mg/kg Lipo-1 3 d prior to FeCl3 administration; and 6) baicalein administration group (n = 6) was given 100 mg/kg baicalein once by intraperitoneal injection 30 min prior to 5 ul PBS administration.

    Click to Show/Hide
Response regulation Baicalein, as a naturel bioactive compound, could ameliorate behavioral seizures and play a key neuroprotective role in FeCl3-induced posttraumatic epileptic seizures through inhibiting ferroptosis and its neuroprotection might be related to suppression of 12-LOX/15-LOX.
References
Ref 1 D-Penicillamine Reveals the Amelioration of Seizure-Induced Neuronal Injury via Inhibiting Aqp11-Dependent Ferroptosis. Antioxidants (Basel). 2022 Aug 19;11(8):1602. doi: 10.3390/antiox11081602.
Ref 2 Seratrodast, a thromboxane A2 receptor antagonist, inhibits neuronal ferroptosis by promoting GPX4 expression and suppressing JNK phosphorylation. Brain Res. 2022 Nov 15;1795:148073. doi: 10.1016/j.brainres.2022.148073. Epub 2022 Sep 6.
Ref 3 Epileptic brain fluorescent imaging reveals apigenin can relieve the myeloperoxidase-mediated oxidative stress and inhibit ferroptosis. Proc Natl Acad Sci U S A. 2020 May 12;117(19):10155-10164. doi: 10.1073/pnas.1917946117. Epub 2020 Apr 23.
Ref 4 Quercetin alleviates kainic acid-induced seizure by inhibiting the Nrf2-mediated ferroptosis pathway. Free Radic Biol Med. 2022 Oct;191:212-226. doi: 10.1016/j.freeradbiomed.2022.09.001. Epub 2022 Sep 8.
Ref 5 Vitamin E Exerts Neuroprotective Effects in Pentylenetetrazole Kindling Epilepsy via Suppression of Ferroptosis. Neurochem Res. 2022 Mar;47(3):739-747. doi: 10.1007/s11064-021-03483-y. Epub 2021 Nov 15.
Ref 6 Baicalein Exerts Neuroprotective Effects in FeCl(3)-Induced Posttraumatic Epileptic Seizures via Suppressing Ferroptosis. Front Pharmacol. 2019 Jun 7;10:638. doi: 10.3389/fphar.2019.00638. eCollection 2019.
Ref 7 Neuroprotective Effects of the Anti-cancer Drug Lapatinib Against Epileptic Seizures via Suppressing Glutathione Peroxidase 4-Dependent Ferroptosis. Front Pharmacol. 2020 Dec 10;11:601572. doi: 10.3389/fphar.2020.601572. eCollection 2020.