Ferroptosis-centered Drug Response Information
General Information of the Drug (ID: ferrodrug0084)
Name |
Lapatinib
|
||||
---|---|---|---|---|---|
Synonyms |
Lapatinib; 231277-92-2; Tykerb; GW572016; GW 572016; Lapatinib [INN]; Lapatinib base; Tyverb; 388082-78-8; Lapatinib (INN); Lapatinib free base; N-(3-chloro-4-((3-fluorobenzyl)oxy)phenyl)-6-(5-(((2-(methylsulfonyl)ethyl)amino)methyl)furan-2-yl)quinazolin-4-amine; N-[3-chloro-4-[(3-fluorophenyl)methoxy]phenyl]-6-[5-[(2-methylsulfonylethylamino)methyl]furan-2-yl]quinazolin-4-amine; N-{3-chloro-4-[(3-fluorophenyl)methoxy]phenyl}-6-(5-{[(2-methanesulfonylethyl)amino]methyl}furan-2-yl)quinazolin-4-amine; Lapatinib (free base); 231277-92-2 (free base); GSK572016; FMM; N-{3-CHLORO-4-[(3-FLUOROBENZYL)OXY]PHENYL}-6-[5-({[2-(METHYLSULFONYL)ETHYL]AMINO}METHYL)-2-FURYL]-4-QUINAZOLINAMINE; CHEMBL554; GW-572016; DTXSID7046675; CHEBI:49603; 0VUA21238F; NSC745750; GSK-572016; GW-572016X; 1210608-87-9; NCGC00167507-01; N-[3-Chloro-4-[(3-fluorophenyl)methoxy]phenyl]-6-[5-[(2-methylsulfonylethylamino)methyl]-2-furyl]quinazolin-4-amine; DTXCID5026675; 4-Quinazolinamine, N-(3-chloro-4-((3-fluorophenyl)methoxy)phenyl)-6-(5-(((2-(methylsulfonyl)ethyl)amino)methyl)-2-furanyl)-; 4-Quinazolinamine, N-[3-chloro-4-[(3-fluorophenyl)methoxy]phenyl]-6-[5-[[[2-(methylsulfonyl)ethyl]amino]methyl]-2-furanyl]-; N-(3-chloro-4-((3-fluorophenyl)methoxy)phenyl)-6-(5-(((2-(methylsulfonyl)ethyl)amino)methyl)-2-furanyl)-4-quinazolinamine; N-(3-Chloro-4-((3-fluorophenyl)methoxy)phenyl)-6-(5-((2-methylsulfonylethylamino)methyl)-2-furyl)quinazolin-4-amine; n-[3-chloro-4-[(3-fluorophenyl)methoxy]phenyl]-6-[5-[[[2-(methylsulfonyl)ethyl]amino]methyl]-2-furanyl]-4-quinazolinamine; N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)furan-2-yl]quinazolin-4-amine; GSK 572016; CAS-231277-92-2; GW-2016; Lapatinib [INN:BAN]; MFCD09264194; GW 282974X; C29H26ClFN4O4S; UNII-0VUA21238F; HSDB 8209; 1xkk; Lapatinib, Tykerb, GW572016; N-[3-Chloro-4-[(3-fluorobenzyl)oxy]phenyl]-6-[5-({[2-(methanesulphonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; N-{3-Chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methanesulphonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; Lapatinib, Free base; nchembio866-comp20; Kinome_3684; Kinome_3685; Lapatinib base- Bio-X; LAPATINIB [MI]; LAPATINIB [VANDF]; LAPATINIB [WHO-DD]; SCHEMBL8100; Lapatinib (GW572016); LAPATINIB [EMA EPAR]; BDBM5445; cid_208908; GTPL5692; EX-A402; BCFGMOOMADDAQU-UHFFFAOYSA-N; BCPP000188; BCPP000189; HMS2089H10; HMS3244N06; HMS3244N10; HMS3244N14; HMS3744K11; Tykerb (TN) (Glaxo Smith Kline); BCP01874; Tox21_112505; NSC800780; AKOS005145766; Tox21_112505_1; AC-1314; BCP9000837; BCP9000838; CCG-270133; DB01259; NSC-745750; NSC-800780; SB16918; NCGC00167507-02; NCGC00167507-03; NCGC00167507-04; NCGC00167507-09; 913989-15-8; AS-14065; BC164610; HY-50898; N-(3-chloro-4-(3-fluorobenzyloxy)phenyl)-6-(5-((2-(methylsulfonyl)ethylamino)methyl)furan-2-yl)quinazolin-4-amine; N-(3-Chloro-4-{[(3-fluorophenyl)methyl]oxy}phenyl)-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furanyl]-4-quinazolinamine; AM20090641; FT-0659650; L0360; SW199101-5; A25184; D08108; EN300-117254; AB01273965-01; AB01273965-02; AB01273965-03; AB01273965_04; AB01273965_05; Q420323; Q-101353; SR-05000001472-1; BRD-K19687926-001-01-7; BRD-K19687926-379-02-5; 1092929-10-6; GW-2016;N-(3-chloro-4-((3-fluorobenzyl)oxy)phenyl)-6-(5-(((2-(methylsulfonyl)ethyl)amino)methyl)furan-2-yl)quinazolin-4-amine;4-[[3-Chloro-4-(3-fluorobenzyloxy)phenyl]amino]-6-[5-[[(2-methanesulfonylethyl)amino]methyl]furan-2-yl]quinazoline; N-[3-chloro-4-(3-fluorobenzyloxy)phenyl]-6-[5-({[2-(methanesulfonyl)ethyl]amino}methyl)furan-2-yl]quinazolin-4-amine; N-[3-chloro-4-[(3-fluorophenyl)methoxy]phenyl]-6-[5-[(2-methylsulfonylethylamino)methyl]-2-furyl] quinazolin-4-amine; N-{3-chloro-4-[(3-fluoro-benzyl)oxy]phenyl}-6-[5-({2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; N-{3-Chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methane sulphonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; N-{3-Chloro-4[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methane sulphonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; N3-Chloro-4-(3-fluorophenyl)methoxyphenyl-6-5-(2-methylsulfonylethylamino)methyl-2-furylquinazolin-4-amine
Click to Show/Hide
|
||||
Structure |
![]() |
||||
Formula |
C29H26ClFN4O4S
|
||||
IUPAC Name |
N-[3-chloro-4-[(3-fluorophenyl)methoxy]phenyl]-6-[5-[(2-methylsulfonylethylamino)methyl]furan-2-yl]quinazolin-4-amine
|
||||
Canonical SMILES |
CS(=O)(=O)CCNCC1=CC=C(O1)C2=CC3=C(C=C2)N=CN=C3NC4=CC(=C(C=C4)OCC5=CC(=CC=C5)F)Cl
|
||||
InChI |
InChI=1S/C29H26ClFN4O4S/c1-40(36,37)12-11-32-16-23-7-10-27(39-23)20-5-8-26-24(14-20)29(34-18-33-26)35-22-6-9-28(25(30)15-22)38-17-19-3-2-4-21(31)13-19/h2-10,13-15,18,32H,11-12,16-17H2,1H3,(H,33,34,35)
|
||||
InChIKey |
BCFGMOOMADDAQU-UHFFFAOYSA-N
|
||||
PubChem CID |
Full List of Ferroptosis Target Related to This Drug
Phospholipid hydroperoxide glutathione peroxidase (GPX4)
In total 3 item(s) under this Target | |||||
Experiment 1 Reporting the Ferroptosis-centered Drug Act on This Target | [1] | ||||
Target for Ferroptosis | Suppressor | ||||
Responsed Disease | Cardiomyopathy | ICD-11: BC43 | |||
Responsed Regulator | Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) | Suppressor | |||
Pathway Response | PI3K-Akt signaling pathway | hsa04151 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
Cell apoptosis | |||||
In Vitro Model | CHO-S/H9C2 cells | Normal | Cricetulus griseus | CVCL_A0TS | |
Response regulation | Lapatinib (LAP) inhibited the cell viability and exacerbated cell injury induced by doxorubicin, as well as increased cell apoptosis. LAP aggravated Dox-induced cardiotoxicity by promoting oxidative stress and ferroptosis in cardiomyocytes via PI3K/AKT-mediated mitochondrial dysfunction. Moreover, GPX4 expression was decreased and ASCL4 level was higher following DOX treatment or the combination therapy of LAP and DOX. | ||||
Experiment 2 Reporting the Ferroptosis-centered Drug Act on This Target | [1] | ||||
Target for Ferroptosis | Suppressor | ||||
Responsed Disease | Cardiomyopathy | ICD-11: BC43 | |||
Responsed Regulator | RAC-alpha serine/threonine-protein kinase (AKT1) | Suppressor | |||
Pathway Response | PI3K-Akt signaling pathway | hsa04151 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
Cell apoptosis | |||||
In Vitro Model | CHO-S/H9C2 cells | Normal | Cricetulus griseus | CVCL_A0TS | |
Response regulation | Lapatinib (LAP) inhibited the cell viability and exacerbated cell injury induced by doxorubicin, as well as increased cell apoptosis. LAP aggravated Dox-induced cardiotoxicity by promoting oxidative stress and ferroptosis in cardiomyocytes via PI3K/AKT-mediated mitochondrial dysfunction. Moreover, GPX4 expression was decreased and ASCL4 level was higher following DOX treatment or the combination therapy of LAP and DOX. | ||||
Experiment 3 Reporting the Ferroptosis-centered Drug Act on This Target | [3] | ||||
Target for Ferroptosis | Suppressor | ||||
Responsed Disease | Status epilepticus | ICD-11: 8A66 | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Glutathione metabolism | hsa00480 | ||||
Cell Process | Cell ferroptosis | ||||
In Vitro Model | HT22 cells | Normal | Mus musculus | CVCL_0321 | |
In Vivo Model |
Male C57BL/6J mice (6-8 weeks of age, weighing 18-22 g) were obtained from the Animal Unit of Central South University. After anesthetization by intraperitoneal injection of 10% chloral hydrate (v/w), the mice were fixed on a stereotactic instrument and stereotactically injected with KA (250 ng/ul) into the hippocampus. KA (1 ul) was injected slowly for 5 min and positioned in the hippocampus (AP-2.0 mm, ML-1.3 mm, V-1.2 mm). After injection, the needle was left in place for additional 10 min to avoid drug reflux. The mice were randomly divided into six experimental groups: 1) sham operation group that received 1 ul PBS injection (5 animals); 2) mice were pretreated p. o. for 21 days on a twice-daily schedule with 100 mg/kg lapatinib alone before PBS administration (5 animals); 3) KA-treated group was injected KA (5 animals); 4) and 5) lapatinib groups were received with 50 mg/kg (5 animals) and 100 mg/kg (5 animals) lapatinib for 21 days before KA treatment, respectively; 6) this group was given i. p. for 14 days with ferroptosis inhibitor (3 mg/kg Fer-1) before KA administration.
Click to Show/Hide
|
||||
Response regulation | Lapatinib exerted neuroprotection via restoring glutathione peroxidase 4 (GPX4). Treatment with GPX4 inhibitor ras-selective lethal small molecule 3 (RSL3) abrogated its anti-ferroptotic potential. It is concluded that lapatinib has neuroprotective potential against epileptic seizures via suppressing GPX4-mediated ferroptosis. | ||||
Solute carrier family 40 member 1 (SLC40A1)
In total 1 item(s) under this Target | ||||
Experiment 1 Reporting the Ferroptosis-centered Drug Act on This Target | [2] | |||
Target for Ferroptosis | Marker/Suppressor | |||
Responsed Disease | Breast cancer | ICD-11: 2C60 | ||
Pathway Response | Fatty acid metabolism | hsa01212 | ||
Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | |||
In Vitro Model | MDA-MB-231 cells | Breast adenocarcinoma | Homo sapiens | CVCL_0062 |
SK-BR-3 cells | Breast adenocarcinoma | Homo sapiens | CVCL_0033 | |
MCF-7 cells | Breast carcinoma | Homo sapiens | CVCL_0031 | |
ZR-75-1 cells | Invasive breast carcinoma | Homo sapiens | CVCL_0588 | |
Response regulation | Overexpression FPN resulted in decreased ROS and cell death whereas knockdown of FPN increased cell death after siramesine and lapatinib treatment. This indicates a novel induction of ferroptosis through altered iron regulation by treating breast cancer cells with a lysosome disruptor and a tyrosine kinase inhibitor. | |||
Heme oxygenase 1 (HMOX1)
In total 1 item(s) under this Target | ||||
Experiment 1 Reporting the Ferroptosis-centered Drug Act on This Target | [4] | |||
Target for Ferroptosis | Driver/Suppressor | |||
Responsed Disease | Glioblastoma | ICD-11: 2A00 | ||
Pathway Response | Fatty acid metabolism | hsa01212 | ||
Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | |||
In Vitro Model | U87 MG-Red-Fluc cells | Glioblastoma | Homo sapiens | CVCL_5J12 |
A-549 cells | Lung adenocarcinoma | Homo sapiens | CVCL_0023 | |
Response regulation | Lapatinib and siramesine was the most effective tyrosine kinase inhibitor and lysosome disruptor drug combination in inducing synergistic cell death in A549 and U87 cells. This cell death was through ferroptosis mediated by ROS and reduced expression of HO-1 in glioma cells. | |||
Unspecific Target
In total 1 item(s) under this Target | ||||
Experiment 1 Reporting the Ferroptosis-centered Drug Act on This Target | [5] | |||
Responsed Disease | Breast cancer | ICD-11: 2C60 | ||
Pathway Response | Ferroptosis | hsa04216 | ||
Autophagy | hsa04140 | |||
Cell Process | Cell ferroptosis | |||
Cell autophagy | ||||
In Vitro Model | MDA-MB-231 cells | Breast adenocarcinoma | Homo sapiens | CVCL_0062 |
SK-BR-3 cells | Breast adenocarcinoma | Homo sapiens | CVCL_0033 | |
Response regulation | The combination of siramesine, a lysosome disruptor, and lapatinib, a dual tyrosine kinase inhibitor, has been shown to synergistically induce cell death in breast cancer cells mediated by ferroptosis. Siramesine and lapatinib initially induced ferroptosis but changes to an autophagy induced cell death after 24 hours. | |||
References