Ferroptosis-centered Disease Response Information
General Information of the Disease (ID: DIS00020)
Name |
Rhabdomyosarcoma
|
||||
---|---|---|---|---|---|
ICD |
ICD-11: 2B55
|
Full List of Target(s) of This Ferroptosis-centered Disease
Unspecific Target
In total 9 item(s) under this target | ||||
Experiment 1 Reporting the Ferroptosis-centered Disease Response by This Target | [1] | |||
Responsed Disease | Rhabdomyosarcoma [ICD-11: 2B55] | |||
Responsed Drug | Bisindolylmaleimide i | Investigative | ||
Responsed Regulator | Protein kinase C alpha type (PRKCA) | Driver | ||
Pathway Response | Fatty acid metabolism | hsa01212 | ||
Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | |||
In Vitro Model | RD cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1649 |
Rh18 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_1659 | |
Rh30 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_0041 | |
Rh36 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_M599 | |
Rh41 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_2176 | |
T 174 cells | Rhabdomyosarcoma | Homo sapiens | CVCL_U955 | |
TE 381.T cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1751 | |
KYM-1 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_3007 | |
Response regulation | Rhabdomyosarcoma (RMS) cells might be vulnerable to oxidative stress-induced cell death. The broad-spectrum protein kinase C (PKC) inhibitor Bisindolylmaleimide I as well as the PKC-a (PRKCA) and b-selective inhibitor G6976 significantly reduced Erastin-induced cell death. Furthermore, the broad-spectrum nicotinamide adenine dinucleotide phosphate-oxidase (NOX) inhibitor Diphenyleneiodonium and the selective NOX1/4 isoform inhibitor GKT137831 significantly decreased Erastin-stimulated ROS, lipid ROS and cell death. | |||
Experiment 2 Reporting the Ferroptosis-centered Disease Response by This Target | [1] | |||
Responsed Disease | Rhabdomyosarcoma [ICD-11: 2B55] | |||
Responsed Drug | Diphenyleneiodonium | Investigative | ||
Responsed Regulator | Dual oxidase 2 (DUOX2) | Driver | ||
Pathway Response | Fatty acid metabolism | hsa01212 | ||
Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | |||
In Vitro Model | RD cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1649 |
Rh18 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_1659 | |
Rh30 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_0041 | |
Rh36 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_M599 | |
Rh41 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_2176 | |
T 174 cells | Rhabdomyosarcoma | Homo sapiens | CVCL_U955 | |
TE 381.T cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1751 | |
KYM-1 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_3007 | |
Response regulation | Rhabdomyosarcoma (RMS) cells might be vulnerable to oxidative stress-induced cell death. The broad-spectrum protein kinase C (PKC) inhibitor Bisindolylmaleimide I as well as the PKC-a and b-selective inhibitor G6976 significantly reduced Erastin-induced cell death. Furthermore, the broad-spectrum nicotinamide adenine dinucleotide phosphate-oxidase (NOX, including NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2) inhibitor Diphenyleneiodonium and the selective NOX1/4 isoform inhibitor GKT137831 significantly decreased Erastin-stimulated ROS, lipid ROS and cell death. | |||
Experiment 3 Reporting the Ferroptosis-centered Disease Response by This Target | [1] | |||
Responsed Disease | Rhabdomyosarcoma [ICD-11: 2B55] | |||
Responsed Drug | Diphenyleneiodonium | Investigative | ||
Responsed Regulator | Dual oxidase 1 (DUOX1) | Driver | ||
Pathway Response | Fatty acid metabolism | hsa01212 | ||
Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | |||
In Vitro Model | RD cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1649 |
Rh18 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_1659 | |
Rh30 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_0041 | |
Rh36 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_M599 | |
Rh41 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_2176 | |
T 174 cells | Rhabdomyosarcoma | Homo sapiens | CVCL_U955 | |
TE 381.T cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1751 | |
KYM-1 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_3007 | |
Response regulation | Rhabdomyosarcoma (RMS) cells might be vulnerable to oxidative stress-induced cell death. The broad-spectrum protein kinase C (PKC) inhibitor Bisindolylmaleimide I as well as the PKC-a and b-selective inhibitor G6976 significantly reduced Erastin-induced cell death. Furthermore, the broad-spectrum nicotinamide adenine dinucleotide phosphate-oxidase (NOX, including NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2) inhibitor Diphenyleneiodonium and the selective NOX1/4 isoform inhibitor GKT137831 significantly decreased Erastin-stimulated ROS, lipid ROS and cell death. | |||
Experiment 4 Reporting the Ferroptosis-centered Disease Response by This Target | [1] | |||
Responsed Disease | Rhabdomyosarcoma [ICD-11: 2B55] | |||
Responsed Drug | Diphenyleneiodonium | Investigative | ||
Responsed Regulator | NADPH oxidase 3 (NOX3) | Driver | ||
Pathway Response | Fatty acid metabolism | hsa01212 | ||
Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | |||
In Vitro Model | RD cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1649 |
Rh18 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_1659 | |
Rh30 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_0041 | |
Rh36 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_M599 | |
Rh41 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_2176 | |
T 174 cells | Rhabdomyosarcoma | Homo sapiens | CVCL_U955 | |
TE 381.T cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1751 | |
KYM-1 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_3007 | |
Response regulation | Rhabdomyosarcoma (RMS) cells might be vulnerable to oxidative stress-induced cell death. The broad-spectrum protein kinase C (PKC) inhibitor Bisindolylmaleimide I as well as the PKC-a and b-selective inhibitor G6976 significantly reduced Erastin-induced cell death. Furthermore, the broad-spectrum nicotinamide adenine dinucleotide phosphate-oxidase (NOX, including NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2) inhibitor Diphenyleneiodonium and the selective NOX1/4 isoform inhibitor GKT137831 significantly decreased Erastin-stimulated ROS, lipid ROS and cell death. | |||
Experiment 5 Reporting the Ferroptosis-centered Disease Response by This Target | [1] | |||
Responsed Disease | Rhabdomyosarcoma [ICD-11: 2B55] | |||
Responsed Drug | Diphenyleneiodonium | Investigative | ||
Responsed Regulator | NADPH oxidase 5 (NOX5) | Driver | ||
Pathway Response | Fatty acid metabolism | hsa01212 | ||
Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | |||
In Vitro Model | RD cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1649 |
Rh18 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_1659 | |
Rh30 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_0041 | |
Rh36 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_M599 | |
Rh41 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_2176 | |
T 174 cells | Rhabdomyosarcoma | Homo sapiens | CVCL_U955 | |
TE 381.T cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1751 | |
KYM-1 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_3007 | |
Response regulation | Rhabdomyosarcoma (RMS) cells might be vulnerable to oxidative stress-induced cell death. The broad-spectrum protein kinase C (PKC) inhibitor Bisindolylmaleimide I as well as the PKC-a and b-selective inhibitor G6976 significantly reduced Erastin-induced cell death. Furthermore, the broad-spectrum nicotinamide adenine dinucleotide phosphate-oxidase (NOX, including NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2) inhibitor Diphenyleneiodonium and the selective NOX1/4 isoform inhibitor GKT137831 significantly decreased Erastin-stimulated ROS, lipid ROS and cell death. | |||
Experiment 6 Reporting the Ferroptosis-centered Disease Response by This Target | [1] | |||
Responsed Disease | Rhabdomyosarcoma [ICD-11: 2B55] | |||
Responsed Drug | Go-6976 | Investigative | ||
Responsed Regulator | Protein kinase C alpha type (PRKCA) | Driver | ||
Pathway Response | Fatty acid metabolism | hsa01212 | ||
Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | |||
In Vitro Model | RD cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1649 |
Rh18 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_1659 | |
Rh30 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_0041 | |
Rh36 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_M599 | |
Rh41 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_2176 | |
T 174 cells | Rhabdomyosarcoma | Homo sapiens | CVCL_U955 | |
TE 381.T cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1751 | |
KYM-1 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_3007 | |
Response regulation | Rhabdomyosarcoma (RMS) cells might be vulnerable to oxidative stress-induced cell death. The broad-spectrum protein kinase C (PKC) inhibitor Bisindolylmaleimide I as well as the PKC-a (PRKCA) and b-selective inhibitor Go-6976 significantly reduced Erastin-induced cell death. Furthermore, the broad-spectrum nicotinamide adenine dinucleotide phosphate-oxidase (NOX) inhibitor Diphenyleneiodonium and the selective NOX1/4 isoform inhibitor GKT137831 significantly decreased Erastin-stimulated ROS, lipid ROS and cell death. | |||
Experiment 7 Reporting the Ferroptosis-centered Disease Response by This Target | [2] | |||
Responsed Disease | Rhabdomyosarcoma [ICD-11: 2B55] | |||
Responsed Regulator | GTPase HRas (HRAS) | Driver | ||
Pathway Response | Ferroptosis | hsa04216 | ||
MAPK signaling pathway | hsa04010 | |||
PI3K-Akt signaling pathway | hsa04151 | |||
Apoptosis | hsa04210 | |||
Cell Process | Cell ferroptosis | |||
Cell apoptosis | ||||
Cell proliferation | ||||
In Vitro Model | RMS13 cells | Rhabdomyosarcoma | Mus musculus | CVCL_S112 |
Response regulation | Oncogenic RAS ( HRAS, NRAS, KRAS) selectively modulates cell death pathways triggered by cytotoxic stimuli in rhabdomyosarcoma RMS13 cells. In conclusion, our discovery of an increased resistance to oxidative stress imposed by oncogenic RAS mutants in RMS13 cells has important implications for the development of targeted therapies for rhabdomyosarcoma (RMS). | |||
Experiment 8 Reporting the Ferroptosis-centered Disease Response by This Target | [2] | |||
Responsed Disease | Rhabdomyosarcoma [ICD-11: 2B55] | |||
Responsed Regulator | GTPase NRas (NRAS) | Driver | ||
Pathway Response | Ferroptosis | hsa04216 | ||
MAPK signaling pathway | hsa04010 | |||
PI3K-Akt signaling pathway | hsa04151 | |||
Apoptosis | hsa04210 | |||
Cell Process | Cell ferroptosis | |||
Cell apoptosis | ||||
Cell proliferation | ||||
In Vitro Model | RMS13 cells | Rhabdomyosarcoma | Mus musculus | CVCL_S112 |
Response regulation | Oncogenic RAS (HRAS, NRAS, KRAS) selectively modulates cell death pathways triggered by cytotoxic stimuli in rhabdomyosarcoma RMS13 cells. In conclusion, our discovery of an increased resistance to oxidative stress imposed by oncogenic RAS mutants in RMS13 cells has important implications for the development of targeted therapies for rhabdomyosarcoma (RMS). | |||
Experiment 9 Reporting the Ferroptosis-centered Disease Response by This Target | [2] | |||
Responsed Disease | Rhabdomyosarcoma [ICD-11: 2B55] | |||
Responsed Regulator | GTPase KRas (KRAS) | Driver | ||
Pathway Response | Ferroptosis | hsa04216 | ||
MAPK signaling pathway | hsa04010 | |||
PI3K-Akt signaling pathway | hsa04151 | |||
Apoptosis | hsa04210 | |||
Cell Process | Cell ferroptosis | |||
Cell apoptosis | ||||
Cell proliferation | ||||
In Vitro Model | RMS13 cells | Rhabdomyosarcoma | Mus musculus | CVCL_S112 |
Response regulation | Oncogenic RAS (HRAS, NRAS, KRAS) selectively modulates cell death pathways triggered by cytotoxic stimuli in rhabdomyosarcoma RMS13 cells. In conclusion, our discovery of an increased resistance to oxidative stress imposed by oncogenic RAS mutants in RMS13 cells has important implications for the development of targeted therapies for rhabdomyosarcoma (RMS). | |||
NADPH oxidase 4 (NOX4)
In total 2 item(s) under this target | ||||
Experiment 1 Reporting the Ferroptosis-centered Disease Response by This Target | [1] | |||
Target for Ferroptosis | Driver | |||
Responsed Disease | Rhabdomyosarcoma [ICD-11: 2B55] | |||
Responsed Drug | GKT137831 | Phase 2 | ||
Pathway Response | Fatty acid metabolism | hsa01212 | ||
Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | |||
In Vitro Model | RD cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1649 |
Rh18 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_1659 | |
Rh30 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_0041 | |
Rh36 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_M599 | |
Rh41 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_2176 | |
T 174 cells | Rhabdomyosarcoma | Homo sapiens | CVCL_U955 | |
TE 381.T cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1751 | |
KYM-1 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_3007 | |
Response regulation | Rhabdomyosarcoma (RMS) cells might be vulnerable to oxidative stress-induced cell death. The broad-spectrum protein kinase C (PKC) inhibitor Bisindolylmaleimide I as well as the PKC- and -selective inhibitor G6976 significantly reduced Erastin-induced cell death. Furthermore, the broad-spectrum nicotinamide adenine dinucleotide phosphate-oxidase (NOX) inhibitor Diphenyleneiodonium and the selective NOX1/4 isoform inhibitor GKT137831 significantly decreased Erastin-stimulated ROS, lipid ROS and cell death. | |||
Experiment 2 Reporting the Ferroptosis-centered Disease Response by This Target | [1] | |||
Target for Ferroptosis | Driver | |||
Responsed Disease | Rhabdomyosarcoma [ICD-11: 2B55] | |||
Responsed Drug | Diphenyleneiodonium | Investigative | ||
Pathway Response | Fatty acid metabolism | hsa01212 | ||
Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | |||
In Vitro Model | RD cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1649 |
Rh18 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_1659 | |
Rh30 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_0041 | |
Rh36 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_M599 | |
Rh41 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_2176 | |
T 174 cells | Rhabdomyosarcoma | Homo sapiens | CVCL_U955 | |
TE 381.T cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1751 | |
KYM-1 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_3007 | |
Response regulation | Rhabdomyosarcoma (RMS) cells might be vulnerable to oxidative stress-induced cell death. The broad-spectrum protein kinase C (PKC) inhibitor Bisindolylmaleimide I as well as the PKC- and -selective inhibitor G6976 significantly reduced Erastin-induced cell death. Furthermore, the broad-spectrum nicotinamide adenine dinucleotide phosphate-oxidase (NOX) inhibitor Diphenyleneiodonium and the selective NOX1/4 isoform inhibitor GKT137831 significantly decreased Erastin-stimulated ROS, lipid ROS and cell death. | |||
NADPH oxidase 1 (NOX1)
In total 2 item(s) under this target | ||||
Experiment 1 Reporting the Ferroptosis-centered Disease Response by This Target | [1] | |||
Target for Ferroptosis | Driver | |||
Responsed Disease | Rhabdomyosarcoma [ICD-11: 2B55] | |||
Responsed Drug | GKT137831 | Phase 2 | ||
Pathway Response | Fatty acid metabolism | hsa01212 | ||
Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | |||
In Vitro Model | RD cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1649 |
Rh18 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_1659 | |
Rh30 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_0041 | |
Rh36 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_M599 | |
Rh41 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_2176 | |
T 174 cells | Rhabdomyosarcoma | Homo sapiens | CVCL_U955 | |
TE 381.T cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1751 | |
KYM-1 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_3007 | |
Response regulation | Rhabdomyosarcoma (RMS) cells might be vulnerable to oxidative stress-induced cell death. The broad-spectrum protein kinase C (PKC) inhibitor Bisindolylmaleimide I as well as the PKC- and -selective inhibitor G6976 significantly reduced Erastin-induced cell death. Furthermore, the broad-spectrum nicotinamide adenine dinucleotide phosphate-oxidase (NOX) inhibitor Diphenyleneiodonium and the selective NOX1/4 isoform inhibitor GKT137831 significantly decreased Erastin-stimulated ROS, lipid ROS and cell death. | |||
Experiment 2 Reporting the Ferroptosis-centered Disease Response by This Target | [1] | |||
Target for Ferroptosis | Driver | |||
Responsed Disease | Rhabdomyosarcoma [ICD-11: 2B55] | |||
Responsed Drug | Diphenyleneiodonium | Investigative | ||
Pathway Response | Fatty acid metabolism | hsa01212 | ||
Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | |||
In Vitro Model | RD cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1649 |
Rh18 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_1659 | |
Rh30 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_0041 | |
Rh36 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_M599 | |
Rh41 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_2176 | |
T 174 cells | Rhabdomyosarcoma | Homo sapiens | CVCL_U955 | |
TE 381.T cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1751 | |
KYM-1 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_3007 | |
Response regulation | Rhabdomyosarcoma (RMS) cells might be vulnerable to oxidative stress-induced cell death. The broad-spectrum protein kinase C (PKC) inhibitor Bisindolylmaleimide I as well as the PKC- and -selective inhibitor G6976 significantly reduced Erastin-induced cell death. Furthermore, the broad-spectrum nicotinamide adenine dinucleotide phosphate-oxidase (NOX) inhibitor Diphenyleneiodonium and the selective NOX1/4 isoform inhibitor GKT137831 significantly decreased Erastin-stimulated ROS, lipid ROS and cell death. | |||
Cytochrome b-245 heavy chain (CYBB)
In total 1 item(s) under this target | ||||
Experiment 1 Reporting the Ferroptosis-centered Disease Response by This Target | [1] | |||
Target for Ferroptosis | Driver | |||
Responsed Disease | Rhabdomyosarcoma [ICD-11: 2B55] | |||
Responsed Drug | Diphenyleneiodonium | Investigative | ||
Pathway Response | Fatty acid metabolism | hsa01212 | ||
Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | |||
In Vitro Model | RD cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1649 |
Rh18 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_1659 | |
Rh30 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_0041 | |
Rh36 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_M599 | |
Rh41 cells | Alveolar rhabdomyosarcoma | Homo sapiens | CVCL_2176 | |
T 174 cells | Rhabdomyosarcoma | Homo sapiens | CVCL_U955 | |
TE 381.T cells | Rhabdomyosarcoma | Homo sapiens | CVCL_1751 | |
KYM-1 cells | Embryonal rhabdomyosarcoma | Homo sapiens | CVCL_3007 | |
Response regulation | Rhabdomyosarcoma (RMS) cells might be vulnerable to oxidative stress-induced cell death. The broad-spectrum protein kinase C (PKC) inhibitor Bisindolylmaleimide I as well as the PKC-a and b-selective inhibitor G6976 significantly reduced Erastin-induced cell death. Furthermore, the broad-spectrum nicotinamide adenine dinucleotide phosphate-oxidase (NOX, including NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2 inhibitor Diphenyleneiodonium and the selective NOX1/4 isoform inhibitor GKT137831 significantly decreased Erastin-stimulated ROS, lipid ROS and cell death. | |||
References