General Information of the Ferroptosis Regulator (ID: REG40031)
Regulator Name CircOMA1 (circRNA)
Synonyms
CircOMA1
    Click to Show/Hide
Gene Name CircOMA1
Regulator Type circRNA
Full List of the Ferroptosis Target of This Regulator and Corresponding Disease/Drug Response(s)
CircOMA1 can regulate the following target(s), and cause disease/drug response(s). You can browse detail information of target(s) or disease/drug response(s).
Browse Target
Browse Disease
Browse Drug
Phospholipid hydroperoxide glutathione peroxidase (GPX4) [Suppressor]
In total 1 item(s) under this target
Experiment 1 Reporting the Ferroptosis Target of This Regulator [1]
Target for Ferroptosis Suppressor
Responsed Disease Prolactinoma ICD-11: 2F37
Responsed Drug Cabergoline Investigative
Pathway Response Glutathione metabolism hsa00480
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
MMQ cells Pituitary gland neoplasm Rattus norvegicus CVCL_2117
HEK-293T cells Normal Homo sapiens CVCL_0063
In Vivo Model
All animal studies were performed in the Laboratory Animal Center of Sun Yat-sen University and conducted in accordance with the institutional policies for animal care. Approximately 5 x 106 MMQ_vector cells or MMQ_circOMA1 cells in 150 uL were injected into the right flank of BALB/c nude mice (total of 12 female mice, 4-6 weeks, SCXK2021-0029). After tumor formation (10 days), mice were randomly divided into four groups (n = 3 mice/group) as follows: vector (saline solution, intraperitoneally injected), circOMA1 (saline solution, intraperitoneally injected), vector + CAB (0.5 mg/kg, intraperitoneally injected), and circOMA1 + CAB (0.5 mg/kg, intraperitoneally injected) in accordance with previous studies. CAB was injected intraperitoneally every 2 days for 14 days. The size of the tumor was measured every 3 days. On Day 15, mice were anesthetized with 0.3% pentobarbital sodium solution and then sacrificed by cervical dislocation, and the xenograft tumors were removed and weighed.

    Click to Show/Hide
Response regulation GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and FTH1, and circOMA1 attenuated cabergoline (CAB)-induced ferroptosis in MMQ cells in vivo and in vitro. circOMA1 may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
Nuclear factor erythroid 2-related factor 2 (NFE2L2) [Suppressor; Marker]
In total 1 item(s) under this target
Experiment 1 Reporting the Ferroptosis Target of This Regulator [1]
Target for Ferroptosis Marker/Suppressor
Responsed Disease Prolactinoma ICD-11: 2F37
Responsed Drug Cabergoline Investigative
Pathway Response Glutathione metabolism hsa00480
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
MMQ cells Pituitary gland neoplasm Rattus norvegicus CVCL_2117
HEK-293T cells Normal Homo sapiens CVCL_0063
In Vivo Model
All animal studies were performed in the Laboratory Animal Center of Sun Yat-sen University and conducted in accordance with the institutional policies for animal care. Approximately 5 x 106 MMQ_vector cells or MMQ_circOMA1 cells in 150 uL were injected into the right flank of BALB/c nude mice (total of 12 female mice, 4-6 weeks, SCXK2021-0029). After tumor formation (10 days), mice were randomly divided into four groups (n = 3 mice/group) as follows: vector (saline solution, intraperitoneally injected), circOMA1 (saline solution, intraperitoneally injected), vector + CAB (0.5 mg/kg, intraperitoneally injected), and circOMA1 + CAB (0.5 mg/kg, intraperitoneally injected) in accordance with previous studies. CAB was injected intraperitoneally every 2 days for 14 days. The size of the tumor was measured every 3 days. On Day 15, mice were anesthetized with 0.3% pentobarbital sodium solution and then sacrificed by cervical dislocation, and the xenograft tumors were removed and weighed.

    Click to Show/Hide
Response regulation GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and FTH1, and circOMA1 attenuated cabergoline (CAB)-induced ferroptosis in MMQ cells in vivo and in vitro. circOMA1 may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
Glutamate--cysteine ligase regulatory subunit (GCLM) [Suppressor]
In total 1 item(s) under this target
Experiment 1 Reporting the Ferroptosis Target of This Regulator [1]
Target for Ferroptosis Suppressor
Responsed Disease Prolactinoma ICD-11: 2F37
Responsed Drug Cabergoline Investigative
Pathway Response Glutathione metabolism hsa00480
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
MMQ cells Pituitary gland neoplasm Rattus norvegicus CVCL_2117
HEK-293T cells Normal Homo sapiens CVCL_0063
In Vivo Model
All animal studies were performed in the Laboratory Animal Center of Sun Yat-sen University and conducted in accordance with the institutional policies for animal care. Approximately 5 x 106 MMQ_vector cells or MMQ_circOMA1 cells in 150 uL were injected into the right flank of BALB/c nude mice (total of 12 female mice, 4-6 weeks, SCXK2021-0029). After tumor formation (10 days), mice were randomly divided into four groups (n = 3 mice/group) as follows: vector (saline solution, intraperitoneally injected), circOMA1 (saline solution, intraperitoneally injected), vector + CAB (0.5 mg/kg, intraperitoneally injected), and circOMA1 + CAB (0.5 mg/kg, intraperitoneally injected) in accordance with previous studies. CAB was injected intraperitoneally every 2 days for 14 days. The size of the tumor was measured every 3 days. On Day 15, mice were anesthetized with 0.3% pentobarbital sodium solution and then sacrificed by cervical dislocation, and the xenograft tumors were removed and weighed.

    Click to Show/Hide
Response regulation GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and FTH1, and circOMA1 attenuated cabergoline (CAB)-induced ferroptosis in MMQ cells in vivo and in vitro. circOMA1 may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
Ferritin heavy chain (FTH1) [Suppressor; Marker]
In total 1 item(s) under this target
Experiment 1 Reporting the Ferroptosis Target of This Regulator [1]
Target for Ferroptosis Marker/Suppressor
Responsed Disease Prolactinoma ICD-11: 2F37
Responsed Drug Cabergoline Investigative
Pathway Response Glutathione metabolism hsa00480
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
MMQ cells Pituitary gland neoplasm Rattus norvegicus CVCL_2117
HEK-293T cells Normal Homo sapiens CVCL_0063
In Vivo Model
All animal studies were performed in the Laboratory Animal Center of Sun Yat-sen University and conducted in accordance with the institutional policies for animal care. Approximately 5 x 106 MMQ_vector cells or MMQ_circOMA1 cells in 150 uL were injected into the right flank of BALB/c nude mice (total of 12 female mice, 4-6 weeks, SCXK2021-0029). After tumor formation (10 days), mice were randomly divided into four groups (n = 3 mice/group) as follows: vector (saline solution, intraperitoneally injected), circOMA1 (saline solution, intraperitoneally injected), vector + CAB (0.5 mg/kg, intraperitoneally injected), and circOMA1 + CAB (0.5 mg/kg, intraperitoneally injected) in accordance with previous studies. CAB was injected intraperitoneally every 2 days for 14 days. The size of the tumor was measured every 3 days. On Day 15, mice were anesthetized with 0.3% pentobarbital sodium solution and then sacrificed by cervical dislocation, and the xenograft tumors were removed and weighed.

    Click to Show/Hide
Response regulation GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and FTH1, and circOMA1 attenuated cabergoline (CAB)-induced ferroptosis in MMQ cells in vivo and in vitro. circOMA1 may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
Prolactinoma [ICD-11: 2F37]
In total 4 item(s) under this disease
Experiment 1 Reporting the Ferroptosis-centered Disease Response [1]
Target Regulator CircOMA1 (circRNA) circRNA
Responsed Drug Cabergoline Investigative
Pathway Response Glutathione metabolism hsa00480
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
MMQ cells Pituitary gland neoplasm Rattus norvegicus CVCL_2117
HEK-293T cells Normal Homo sapiens CVCL_0063
In Vivo Model
All animal studies were performed in the Laboratory Animal Center of Sun Yat-sen University and conducted in accordance with the institutional policies for animal care. Approximately 5 x 106 MMQ_vector cells or MMQ_circOMA1 cells in 150 uL were injected into the right flank of BALB/c nude mice (total of 12 female mice, 4-6 weeks, SCXK2021-0029). After tumor formation (10 days), mice were randomly divided into four groups (n = 3 mice/group) as follows: vector (saline solution, intraperitoneally injected), circOMA1 (saline solution, intraperitoneally injected), vector + CAB (0.5 mg/kg, intraperitoneally injected), and circOMA1 + CAB (0.5 mg/kg, intraperitoneally injected) in accordance with previous studies. CAB was injected intraperitoneally every 2 days for 14 days. The size of the tumor was measured every 3 days. On Day 15, mice were anesthetized with 0.3% pentobarbital sodium solution and then sacrificed by cervical dislocation, and the xenograft tumors were removed and weighed.

    Click to Show/Hide
Response regulation GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and FTH1, and circOMA1 attenuated cabergoline (CAB)-induced ferroptosis in MMQ cells in vivo and in vitro. circOMA1 may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
Experiment 2 Reporting the Ferroptosis-centered Disease Response [1]
Target Regulator CircOMA1 (circRNA) circRNA
Responsed Drug Cabergoline Investigative
Pathway Response Glutathione metabolism hsa00480
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
MMQ cells Pituitary gland neoplasm Rattus norvegicus CVCL_2117
HEK-293T cells Normal Homo sapiens CVCL_0063
In Vivo Model
All animal studies were performed in the Laboratory Animal Center of Sun Yat-sen University and conducted in accordance with the institutional policies for animal care. Approximately 5 x 106 MMQ_vector cells or MMQ_circOMA1 cells in 150 uL were injected into the right flank of BALB/c nude mice (total of 12 female mice, 4-6 weeks, SCXK2021-0029). After tumor formation (10 days), mice were randomly divided into four groups (n = 3 mice/group) as follows: vector (saline solution, intraperitoneally injected), circOMA1 (saline solution, intraperitoneally injected), vector + CAB (0.5 mg/kg, intraperitoneally injected), and circOMA1 + CAB (0.5 mg/kg, intraperitoneally injected) in accordance with previous studies. CAB was injected intraperitoneally every 2 days for 14 days. The size of the tumor was measured every 3 days. On Day 15, mice were anesthetized with 0.3% pentobarbital sodium solution and then sacrificed by cervical dislocation, and the xenograft tumors were removed and weighed.

    Click to Show/Hide
Response regulation GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and FTH1, and circOMA1 attenuated cabergoline (CAB)-induced ferroptosis in MMQ cells in vivo and in vitro. circOMA1 may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
Experiment 3 Reporting the Ferroptosis-centered Disease Response [1]
Target Regulator CircOMA1 (circRNA) circRNA
Responsed Drug Cabergoline Investigative
Pathway Response Glutathione metabolism hsa00480
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
MMQ cells Pituitary gland neoplasm Rattus norvegicus CVCL_2117
HEK-293T cells Normal Homo sapiens CVCL_0063
In Vivo Model
All animal studies were performed in the Laboratory Animal Center of Sun Yat-sen University and conducted in accordance with the institutional policies for animal care. Approximately 5 x 106 MMQ_vector cells or MMQ_circOMA1 cells in 150 uL were injected into the right flank of BALB/c nude mice (total of 12 female mice, 4-6 weeks, SCXK2021-0029). After tumor formation (10 days), mice were randomly divided into four groups (n = 3 mice/group) as follows: vector (saline solution, intraperitoneally injected), circOMA1 (saline solution, intraperitoneally injected), vector + CAB (0.5 mg/kg, intraperitoneally injected), and circOMA1 + CAB (0.5 mg/kg, intraperitoneally injected) in accordance with previous studies. CAB was injected intraperitoneally every 2 days for 14 days. The size of the tumor was measured every 3 days. On Day 15, mice were anesthetized with 0.3% pentobarbital sodium solution and then sacrificed by cervical dislocation, and the xenograft tumors were removed and weighed.

    Click to Show/Hide
Response regulation GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and FTH1, and circOMA1 attenuated cabergoline (CAB)-induced ferroptosis in MMQ cells in vivo and in vitro. circOMA1 may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
Experiment 4 Reporting the Ferroptosis-centered Disease Response [1]
Target Regulator CircOMA1 (circRNA) circRNA
Responsed Drug Cabergoline Investigative
Pathway Response Glutathione metabolism hsa00480
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
MMQ cells Pituitary gland neoplasm Rattus norvegicus CVCL_2117
HEK-293T cells Normal Homo sapiens CVCL_0063
In Vivo Model
All animal studies were performed in the Laboratory Animal Center of Sun Yat-sen University and conducted in accordance with the institutional policies for animal care. Approximately 5 x 106 MMQ_vector cells or MMQ_circOMA1 cells in 150 uL were injected into the right flank of BALB/c nude mice (total of 12 female mice, 4-6 weeks, SCXK2021-0029). After tumor formation (10 days), mice were randomly divided into four groups (n = 3 mice/group) as follows: vector (saline solution, intraperitoneally injected), circOMA1 (saline solution, intraperitoneally injected), vector + CAB (0.5 mg/kg, intraperitoneally injected), and circOMA1 + CAB (0.5 mg/kg, intraperitoneally injected) in accordance with previous studies. CAB was injected intraperitoneally every 2 days for 14 days. The size of the tumor was measured every 3 days. On Day 15, mice were anesthetized with 0.3% pentobarbital sodium solution and then sacrificed by cervical dislocation, and the xenograft tumors were removed and weighed.

    Click to Show/Hide
Response regulation GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and FTH1, and circOMA1 attenuated cabergoline (CAB)-induced ferroptosis in MMQ cells in vivo and in vitro. circOMA1 may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
Cabergoline [Investigative]
In total 4 item(s) under this drug
Experiment 1 Reporting the Ferroptosis-centered Drug Response [1]
Response Target Phospholipid hydroperoxide glutathione peroxidase (GPX4) Suppressor
Responsed Disease Prolactinoma ICD-11: 2F37
Pathway Response Glutathione metabolism hsa00480
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
MMQ cells Pituitary gland neoplasm Rattus norvegicus CVCL_2117
HEK-293T cells Normal Homo sapiens CVCL_0063
In Vivo Model
All animal studies were performed in the Laboratory Animal Center of Sun Yat-sen University and conducted in accordance with the institutional policies for animal care. Approximately 5 x 106 MMQ_vector cells or MMQ_circOMA1 cells in 150 uL were injected into the right flank of BALB/c nude mice (total of 12 female mice, 4-6 weeks, SCXK2021-0029). After tumor formation (10 days), mice were randomly divided into four groups (n = 3 mice/group) as follows: vector (saline solution, intraperitoneally injected), circOMA1 (saline solution, intraperitoneally injected), vector + CAB (0.5 mg/kg, intraperitoneally injected), and circOMA1 + CAB (0.5 mg/kg, intraperitoneally injected) in accordance with previous studies. CAB was injected intraperitoneally every 2 days for 14 days. The size of the tumor was measured every 3 days. On Day 15, mice were anesthetized with 0.3% pentobarbital sodium solution and then sacrificed by cervical dislocation, and the xenograft tumors were removed and weighed.

    Click to Show/Hide
Response regulation GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and FTH1, and circOMA1 attenuated cabergoline (CAB)-induced ferroptosis in MMQ cells in vivo and in vitro. circOMA1 may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
Experiment 2 Reporting the Ferroptosis-centered Drug Response [1]
Response Target Nuclear factor erythroid 2-related factor 2 (NFE2L2) Suppressor; Marker
Responsed Disease Prolactinoma ICD-11: 2F37
Pathway Response Glutathione metabolism hsa00480
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
MMQ cells Pituitary gland neoplasm Rattus norvegicus CVCL_2117
HEK-293T cells Normal Homo sapiens CVCL_0063
In Vivo Model
All animal studies were performed in the Laboratory Animal Center of Sun Yat-sen University and conducted in accordance with the institutional policies for animal care. Approximately 5 x 106 MMQ_vector cells or MMQ_circOMA1 cells in 150 uL were injected into the right flank of BALB/c nude mice (total of 12 female mice, 4-6 weeks, SCXK2021-0029). After tumor formation (10 days), mice were randomly divided into four groups (n = 3 mice/group) as follows: vector (saline solution, intraperitoneally injected), circOMA1 (saline solution, intraperitoneally injected), vector + CAB (0.5 mg/kg, intraperitoneally injected), and circOMA1 + CAB (0.5 mg/kg, intraperitoneally injected) in accordance with previous studies. CAB was injected intraperitoneally every 2 days for 14 days. The size of the tumor was measured every 3 days. On Day 15, mice were anesthetized with 0.3% pentobarbital sodium solution and then sacrificed by cervical dislocation, and the xenograft tumors were removed and weighed.

    Click to Show/Hide
Response regulation GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and FTH1, and circOMA1 attenuated cabergoline (CAB)-induced ferroptosis in MMQ cells in vivo and in vitro. circOMA1 may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
Experiment 3 Reporting the Ferroptosis-centered Drug Response [1]
Response Target Glutamate--cysteine ligase regulatory subunit (GCLM) Suppressor
Responsed Disease Prolactinoma ICD-11: 2F37
Pathway Response Glutathione metabolism hsa00480
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
MMQ cells Pituitary gland neoplasm Rattus norvegicus CVCL_2117
HEK-293T cells Normal Homo sapiens CVCL_0063
In Vivo Model
All animal studies were performed in the Laboratory Animal Center of Sun Yat-sen University and conducted in accordance with the institutional policies for animal care. Approximately 5 x 106 MMQ_vector cells or MMQ_circOMA1 cells in 150 uL were injected into the right flank of BALB/c nude mice (total of 12 female mice, 4-6 weeks, SCXK2021-0029). After tumor formation (10 days), mice were randomly divided into four groups (n = 3 mice/group) as follows: vector (saline solution, intraperitoneally injected), circOMA1 (saline solution, intraperitoneally injected), vector + CAB (0.5 mg/kg, intraperitoneally injected), and circOMA1 + CAB (0.5 mg/kg, intraperitoneally injected) in accordance with previous studies. CAB was injected intraperitoneally every 2 days for 14 days. The size of the tumor was measured every 3 days. On Day 15, mice were anesthetized with 0.3% pentobarbital sodium solution and then sacrificed by cervical dislocation, and the xenograft tumors were removed and weighed.

    Click to Show/Hide
Response regulation GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and FTH1, and circOMA1 attenuated cabergoline (CAB)-induced ferroptosis in MMQ cells in vivo and in vitro. circOMA1 may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
Experiment 4 Reporting the Ferroptosis-centered Drug Response [1]
Response Target Ferritin heavy chain (FTH1) Suppressor; Marker
Responsed Disease Prolactinoma ICD-11: 2F37
Pathway Response Glutathione metabolism hsa00480
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
MMQ cells Pituitary gland neoplasm Rattus norvegicus CVCL_2117
HEK-293T cells Normal Homo sapiens CVCL_0063
In Vivo Model
All animal studies were performed in the Laboratory Animal Center of Sun Yat-sen University and conducted in accordance with the institutional policies for animal care. Approximately 5 x 106 MMQ_vector cells or MMQ_circOMA1 cells in 150 uL were injected into the right flank of BALB/c nude mice (total of 12 female mice, 4-6 weeks, SCXK2021-0029). After tumor formation (10 days), mice were randomly divided into four groups (n = 3 mice/group) as follows: vector (saline solution, intraperitoneally injected), circOMA1 (saline solution, intraperitoneally injected), vector + CAB (0.5 mg/kg, intraperitoneally injected), and circOMA1 + CAB (0.5 mg/kg, intraperitoneally injected) in accordance with previous studies. CAB was injected intraperitoneally every 2 days for 14 days. The size of the tumor was measured every 3 days. On Day 15, mice were anesthetized with 0.3% pentobarbital sodium solution and then sacrificed by cervical dislocation, and the xenograft tumors were removed and weighed.

    Click to Show/Hide
Response regulation GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and FTH1, and circOMA1 attenuated cabergoline (CAB)-induced ferroptosis in MMQ cells in vivo and in vitro. circOMA1 may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
References
Ref 1 CircOMA1 modulates cabergoline resistance by downregulating ferroptosis in prolactinoma. J Endocrinol Invest. 2023 Aug;46(8):1573-1587. doi: 10.1007/s40618-023-02010-w. Epub 2023 Feb 28.