General Information of the Ferroptosis Regulator (ID: REG20067)
Regulator Name hsa-miR-145-5p (miRNA)
Synonyms
hsa-miR-145-5p
    Click to Show/Hide
Gene Name hsa-miR-145-5p
Regulator Type miRNA
MiRBase ID MIMAT0000437
Sequence
GUCCAGUUUUCCCAGGAAUCCCU

    Click to Show/Hide
Full List of the Ferroptosis Target of This Regulator and Corresponding Disease/Drug Response(s)
hsa-miR-145-5p can regulate the following target(s), and cause disease/drug response(s). You can browse detail information of target(s) or disease/drug response(s).
Browse Target
Browse Disease
Browse Drug
Glutamate--cysteine ligase regulatory subunit (GCLM) [Suppressor]
In total 1 item(s) under this target
Experiment 1 Reporting the Ferroptosis Target of This Regulator [1]
Target for Ferroptosis Suppressor
Responsed Disease Prolactinoma ICD-11: 2F37
Responsed Drug Cabergoline Investigative
Pathway Response Glutathione metabolism hsa00480
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
MMQ cells Pituitary gland neoplasm Rattus norvegicus CVCL_2117
HEK-293T cells Normal Homo sapiens CVCL_0063
In Vivo Model
All animal studies were performed in the Laboratory Animal Center of Sun Yat-sen University and conducted in accordance with the institutional policies for animal care. Approximately 5 x 106 MMQ_vector cells or MMQ_circOMA1 cells in 150 uL were injected into the right flank of BALB/c nude mice (total of 12 female mice, 4-6 weeks, SCXK2021-0029). After tumor formation (10 days), mice were randomly divided into four groups (n = 3 mice/group) as follows: vector (saline solution, intraperitoneally injected), circOMA1 (saline solution, intraperitoneally injected), vector + CAB (0.5 mg/kg, intraperitoneally injected), and circOMA1 + CAB (0.5 mg/kg, intraperitoneally injected) in accordance with previous studies. CAB was injected intraperitoneally every 2 days for 14 days. The size of the tumor was measured every 3 days. On Day 15, mice were anesthetized with 0.3% pentobarbital sodium solution and then sacrificed by cervical dislocation, and the xenograft tumors were removed and weighed.

    Click to Show/Hide
Response regulation GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and FTH1, and circOMA1 attenuated cabergoline (CAB)-induced ferroptosis in MMQ cells in vivo and in vitro. circOMA1 may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
Unspecific Target [Unspecific Target]
In total 1 item(s) under this target
Experiment 1 Reporting the Ferroptosis Target of This Regulator [2]
Responsed Disease Endometriosis ICD-11: GA10
Pathway Response Fatty acid metabolism hsa01212
Ferroptosis hsa04216
Cell Process Cell ferroptosis
In Vitro Model
hESCs (Human endometrial stromal cells)
In Vivo Model
Seven-to-8-week-old C57BL/6 female mice were obtained and 17-b-estradiol-3-benzoate (30 ug/kg, Sigma) was administered to each mouse every day for 3 days. We removed uterine horns from the donor mice and added them to saline. Endometrium was cut into 1 mm2 fragments. The endometrial fragments from each uterine horn were suspended in 0.3 ml saline and injected into the peritoneal cavities of recipient mice with an 18-gauge needle. At 8 days (5 days after the operation), endometrial-like lesions were established, and they were randomly divided into two groups (each group contained 12 mice). In the experimental group, each mouse received erastin (20 mg/kg/day) by intraperitoneal injection over a 7-day period. In the control group, DMSO was used instead of erastin.

    Click to Show/Hide
Response regulation Knockdown of MALAT1 facilitates erastin-induced ferroptosis by targeting miR-145-5p/MUC1 signaling. The synergistic effect of MALAT1 knockdown and erastin induction in ferroptosis may be a new therapeutic strategy for endometriosis.
Prolactinoma [ICD-11: 2F37]
In total 1 item(s) under this disease
Experiment 1 Reporting the Ferroptosis-centered Disease Response [1]
Target Regulator hsa-miR-145-5p (miRNA) miRNA
Responsed Drug Cabergoline Investigative
Pathway Response Glutathione metabolism hsa00480
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
MMQ cells Pituitary gland neoplasm Rattus norvegicus CVCL_2117
HEK-293T cells Normal Homo sapiens CVCL_0063
In Vivo Model
All animal studies were performed in the Laboratory Animal Center of Sun Yat-sen University and conducted in accordance with the institutional policies for animal care. Approximately 5 x 106 MMQ_vector cells or MMQ_circOMA1 cells in 150 uL were injected into the right flank of BALB/c nude mice (total of 12 female mice, 4-6 weeks, SCXK2021-0029). After tumor formation (10 days), mice were randomly divided into four groups (n = 3 mice/group) as follows: vector (saline solution, intraperitoneally injected), circOMA1 (saline solution, intraperitoneally injected), vector + CAB (0.5 mg/kg, intraperitoneally injected), and circOMA1 + CAB (0.5 mg/kg, intraperitoneally injected) in accordance with previous studies. CAB was injected intraperitoneally every 2 days for 14 days. The size of the tumor was measured every 3 days. On Day 15, mice were anesthetized with 0.3% pentobarbital sodium solution and then sacrificed by cervical dislocation, and the xenograft tumors were removed and weighed.

    Click to Show/Hide
Response regulation GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and FTH1, and circOMA1 attenuated cabergoline (CAB)-induced ferroptosis in MMQ cells in vivo and in vitro. circOMA1 may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
Endometriosis [ICD-11: GA10]
In total 1 item(s) under this disease
Experiment 1 Reporting the Ferroptosis-centered Disease Response [2]
Target Regulator hsa-miR-145-5p (miRNA) miRNA
Pathway Response Fatty acid metabolism hsa01212
Ferroptosis hsa04216
Cell Process Cell ferroptosis
In Vitro Model
hESCs (Human endometrial stromal cells)
In Vivo Model
Seven-to-8-week-old C57BL/6 female mice were obtained and 17-b-estradiol-3-benzoate (30 ug/kg, Sigma) was administered to each mouse every day for 3 days. We removed uterine horns from the donor mice and added them to saline. Endometrium was cut into 1 mm2 fragments. The endometrial fragments from each uterine horn were suspended in 0.3 ml saline and injected into the peritoneal cavities of recipient mice with an 18-gauge needle. At 8 days (5 days after the operation), endometrial-like lesions were established, and they were randomly divided into two groups (each group contained 12 mice). In the experimental group, each mouse received erastin (20 mg/kg/day) by intraperitoneal injection over a 7-day period. In the control group, DMSO was used instead of erastin.

    Click to Show/Hide
Response regulation Knockdown of MALAT1 facilitates erastin-induced ferroptosis by targeting miR-145-5p/MUC1 signaling. The synergistic effect of MALAT1 knockdown and erastin induction in ferroptosis may be a new therapeutic strategy for endometriosis.
Cabergoline [Investigative]
In total 1 item(s) under this drug
Experiment 1 Reporting the Ferroptosis-centered Drug Response [1]
Response Target Glutamate--cysteine ligase regulatory subunit (GCLM) Suppressor
Responsed Disease Prolactinoma ICD-11: 2F37
Pathway Response Glutathione metabolism hsa00480
Fatty acid metabolism hsa01212
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
MMQ cells Pituitary gland neoplasm Rattus norvegicus CVCL_2117
HEK-293T cells Normal Homo sapiens CVCL_0063
In Vivo Model
All animal studies were performed in the Laboratory Animal Center of Sun Yat-sen University and conducted in accordance with the institutional policies for animal care. Approximately 5 x 106 MMQ_vector cells or MMQ_circOMA1 cells in 150 uL were injected into the right flank of BALB/c nude mice (total of 12 female mice, 4-6 weeks, SCXK2021-0029). After tumor formation (10 days), mice were randomly divided into four groups (n = 3 mice/group) as follows: vector (saline solution, intraperitoneally injected), circOMA1 (saline solution, intraperitoneally injected), vector + CAB (0.5 mg/kg, intraperitoneally injected), and circOMA1 + CAB (0.5 mg/kg, intraperitoneally injected) in accordance with previous studies. CAB was injected intraperitoneally every 2 days for 14 days. The size of the tumor was measured every 3 days. On Day 15, mice were anesthetized with 0.3% pentobarbital sodium solution and then sacrificed by cervical dislocation, and the xenograft tumors were removed and weighed.

    Click to Show/Hide
Response regulation GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and FTH1, and circOMA1 attenuated cabergoline (CAB)-induced ferroptosis in MMQ cells in vivo and in vitro. circOMA1 may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
References
Ref 1 CircOMA1 modulates cabergoline resistance by downregulating ferroptosis in prolactinoma. J Endocrinol Invest. 2023 Aug;46(8):1573-1587. doi: 10.1007/s40618-023-02010-w. Epub 2023 Feb 28.
Ref 2 Silencing of lncRNA MALAT1 facilitates erastin-induced ferroptosis in endometriosis through miR-145-5p/MUC1 signaling. Cell Death Discov. 2022 Apr 11;8(1):190. doi: 10.1038/s41420-022-00975-w.