Ferroptosis Regulator Information
General Information of the Ferroptosis Regulator (ID: REG10131)
Full List of the Ferroptosis Target of This Regulator and Corresponding Disease/Drug Response(s)
PRDX6
can regulate the following target(s), and cause disease/drug response(s). You can browse detail information of target(s) or disease/drug response(s).
Browse Target
Browse Disease
Phospholipid hydroperoxide glutathione peroxidase (GPX4) [Suppressor]
In total 1 item(s) under this target | |||||
Experiment 1 Reporting the Ferroptosis Target of This Regulator | [1] | ||||
Target for Ferroptosis | Suppressor | ||||
Responsed Disease | Ischemia/reperfusion injury | ICD-11: DB98 | |||
Pathway Response | Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | ||||
Cell proliferation | |||||
In Vitro Model |
HL-1 cells | Normal | Mus musculus | CVCL_0303 | |
hBMSCs (Bone marrow stromal cells) | |||||
In Vivo Model |
A total of 96 C57BL/6 male mice (20-25 g) aged 11-12 weeks were purchased from experimental animal center of experimental animal center of Guangdong Medical University. 96 mice were randomly divided into four groups (24 mice per group): Sham group (200 ul of PBS), Sham + BMSCs-Exo group (200 ul of BMSCs-Exo), I/R group (200 ul of PBS) and I/R + BMSCs-Exo group (200 ul of BMSCs-Exo). After 10 days of adaptive feeding, all mice were injected intraperitoneally with 0.4-0.5 mL/100 g 1%Pentobarbital Sodium. I/R and I/R + BMSCs-Exo group mice were subjected to cardiac I/R injury induced by ligation of the left anterior descending artery (LAD) for 30 min followed by 24 h reperfusion. Sham and Sham + BMSCs-Exo mice were sham treated and subjected to the same surgical procedures as I/R mice except that they did not receive ligation of the left anterior descending coronary artery.
Click to Show/Hide
|
||||
Response regulation | Cellular ferroptosis is involved in the pathogenesis of Ischemia-Reperfusion Injury. BMSCs-Exo lncRNA Mir9-3hg can inhibit ferroptosis by modulating the Pum2/ PRDX6 axis to exhibit cardioprotective effectsinvivoandinvitro. Silence of PRDX6 markedly decreased cell proliferation, GSH content and Gpx4 protein level, as well as prominently increased iron ion concentration and levels of ROS content and ACSL4 protein in H/R-treated HL-1 cells. | ||||
Long-chain-fatty-acid--CoA ligase 4 (ACSL4) [Driver]
In total 1 item(s) under this target | |||||
Experiment 1 Reporting the Ferroptosis Target of This Regulator | [1] | ||||
Target for Ferroptosis | Driver | ||||
Responsed Disease | Ischemia/reperfusion injury | ICD-11: DB98 | |||
Pathway Response | Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | ||||
Cell proliferation | |||||
In Vitro Model |
HL-1 cells | Normal | Mus musculus | CVCL_0303 | |
hBMSCs (Bone marrow stromal cells) | |||||
In Vivo Model |
A total of 96 C57BL/6 male mice (20-25 g) aged 11-12 weeks were purchased from experimental animal center of experimental animal center of Guangdong Medical University. 96 mice were randomly divided into four groups (24 mice per group): Sham group (200 ul of PBS), Sham + BMSCs-Exo group (200 ul of BMSCs-Exo), I/R group (200 ul of PBS) and I/R + BMSCs-Exo group (200 ul of BMSCs-Exo). After 10 days of adaptive feeding, all mice were injected intraperitoneally with 0.4-0.5 mL/100 g 1%Pentobarbital Sodium. I/R and I/R + BMSCs-Exo group mice were subjected to cardiac I/R injury induced by ligation of the left anterior descending artery (LAD) for 30 min followed by 24 h reperfusion. Sham and Sham + BMSCs-Exo mice were sham treated and subjected to the same surgical procedures as I/R mice except that they did not receive ligation of the left anterior descending coronary artery.
Click to Show/Hide
|
||||
Response regulation | Cellular ferroptosis is involved in the pathogenesis of Ischemia-Reperfusion Injury. BMSCs-Exo lncRNA Mir9-3hg can inhibit ferroptosis by modulating the Pum2/ PRDX6 axis to exhibit cardioprotective effectsinvivoandinvitro. Silence of PRDX6 markedly decreased cell proliferation, GSH content and Gpx4 protein level, as well as prominently increased iron ion concentration and levels of ROS content and ACSL4 protein in H/R-treated HL-1 cells. | ||||
Cystine/glutamate transporter (SLC7A11) [Driver; Suppressor]
In total 1 item(s) under this target | |||||
Experiment 1 Reporting the Ferroptosis Target of This Regulator | [2] | ||||
Target for Ferroptosis | Suppressor | ||||
Responsed Disease | Chronic kidney disease | ICD-11: GB61 | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
In Vitro Model |
MPC-5 cells | Normal | Mus musculus | CVCL_AS87 | |
In Vivo Model |
Male C57BL/6 mice (6-8 weeks old, 20-25 g) were obtained from KCI BioTech (Jiangsu, China. Mice were intraperitoneally injected 50 mg/kg/day of STZ for 5 straight days to generate DN mouse. At 3 days post injection, glucose levels were measured from tail blood, and blood glucose level more than 16.4 mmol/L indicated that DN models was established.
Click to Show/Hide
|
||||
Response regulation | Prdx6 overexpression also eliminated ferroptosis caused by HG, which was reflected in the suppression of iron accumulation and the increase in SLC7A11 and GPX4 expression. Moreover, Sp1 could bind to the three Sp1 response elements in the Prdx6 promoter, thereby directly regulating the transcriptional activation of Prdx6 in podocytes. Further, Prdx6 overexpression attenuated renal injuries in streptozotocin-induced diabetic nephropathy mice. | ||||
Ischemia/reperfusion injury [ICD-11: DB98]
In total 2 item(s) under this disease | |||||
Experiment 1 Reporting the Ferroptosis-centered Disease Response | [1] | ||||
Target Regulator | Peroxiredoxin-6 (PRDX6) | Protein coding | |||
Pathway Response | Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | ||||
Cell proliferation | |||||
In Vitro Model |
HL-1 cells | Normal | Mus musculus | CVCL_0303 | |
hBMSCs (Bone marrow stromal cells) | |||||
In Vivo Model |
A total of 96 C57BL/6 male mice (20-25 g) aged 11-12 weeks were purchased from experimental animal center of experimental animal center of Guangdong Medical University. 96 mice were randomly divided into four groups (24 mice per group): Sham group (200 ul of PBS), Sham + BMSCs-Exo group (200 ul of BMSCs-Exo), I/R group (200 ul of PBS) and I/R + BMSCs-Exo group (200 ul of BMSCs-Exo). After 10 days of adaptive feeding, all mice were injected intraperitoneally with 0.4-0.5 mL/100 g 1%Pentobarbital Sodium. I/R and I/R + BMSCs-Exo group mice were subjected to cardiac I/R injury induced by ligation of the left anterior descending artery (LAD) for 30 min followed by 24 h reperfusion. Sham and Sham + BMSCs-Exo mice were sham treated and subjected to the same surgical procedures as I/R mice except that they did not receive ligation of the left anterior descending coronary artery.
Click to Show/Hide
|
||||
Response regulation | Cellular ferroptosis is involved in the pathogenesis of Ischemia-Reperfusion Injury. BMSCs-Exo lncRNA Mir9-3hg can inhibit ferroptosis by modulating the Pum2/ PRDX6 axis to exhibit cardioprotective effectsinvivoandinvitro. Silence of PRDX6 markedly decreased cell proliferation, GSH content and Gpx4 protein level, as well as prominently increased iron ion concentration and levels of ROS content and ACSL4 protein in H/R-treated HL-1 cells. | ||||
Experiment 2 Reporting the Ferroptosis-centered Disease Response | [1] | ||||
Target Regulator | Peroxiredoxin-6 (PRDX6) | Protein coding | |||
Pathway Response | Ferroptosis | hsa04216 | |||
Cell Process | Cell ferroptosis | ||||
Cell proliferation | |||||
In Vitro Model |
HL-1 cells | Normal | Mus musculus | CVCL_0303 | |
hBMSCs (Bone marrow stromal cells) | |||||
In Vivo Model |
A total of 96 C57BL/6 male mice (20-25 g) aged 11-12 weeks were purchased from experimental animal center of experimental animal center of Guangdong Medical University. 96 mice were randomly divided into four groups (24 mice per group): Sham group (200 ul of PBS), Sham + BMSCs-Exo group (200 ul of BMSCs-Exo), I/R group (200 ul of PBS) and I/R + BMSCs-Exo group (200 ul of BMSCs-Exo). After 10 days of adaptive feeding, all mice were injected intraperitoneally with 0.4-0.5 mL/100 g 1%Pentobarbital Sodium. I/R and I/R + BMSCs-Exo group mice were subjected to cardiac I/R injury induced by ligation of the left anterior descending artery (LAD) for 30 min followed by 24 h reperfusion. Sham and Sham + BMSCs-Exo mice were sham treated and subjected to the same surgical procedures as I/R mice except that they did not receive ligation of the left anterior descending coronary artery.
Click to Show/Hide
|
||||
Response regulation | Cellular ferroptosis is involved in the pathogenesis of Ischemia-Reperfusion Injury. BMSCs-Exo lncRNA Mir9-3hg can inhibit ferroptosis by modulating the Pum2/ PRDX6 axis to exhibit cardioprotective effectsinvivoandinvitro. Silence of PRDX6 markedly decreased cell proliferation, GSH content and Gpx4 protein level, as well as prominently increased iron ion concentration and levels of ROS content and ACSL4 protein in H/R-treated HL-1 cells. | ||||
Chronic kidney disease [ICD-11: GB61]
In total 1 item(s) under this disease | |||||
Experiment 1 Reporting the Ferroptosis-centered Disease Response | [2] | ||||
Target Regulator | Peroxiredoxin-6 (PRDX6) | Protein coding | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
In Vitro Model |
MPC-5 cells | Normal | Mus musculus | CVCL_AS87 | |
In Vivo Model |
Male C57BL/6 mice (6-8 weeks old, 20-25 g) were obtained from KCI BioTech (Jiangsu, China. Mice were intraperitoneally injected 50 mg/kg/day of STZ for 5 straight days to generate DN mouse. At 3 days post injection, glucose levels were measured from tail blood, and blood glucose level more than 16.4 mmol/L indicated that DN models was established.
Click to Show/Hide
|
||||
Response regulation | Prdx6 overexpression also eliminated ferroptosis caused by HG, which was reflected in the suppression of iron accumulation and the increase in SLC7A11 and GPX4 expression. Moreover, Sp1 could bind to the three Sp1 response elements in the Prdx6 promoter, thereby directly regulating the transcriptional activation of Prdx6 in podocytes. Further, Prdx6 overexpression attenuated renal injuries in streptozotocin-induced diabetic nephropathy mice. | ||||
References