General Information of the Drug (ID: ferrodrug0210)
Name
Ginkgetin
Synonyms
Ginkgetin; 481-46-9; 7,4'-Dimethylamentoflavone; Amentoflavone 7,4'-dimethyl ether; CHEBI:5353; HY5EZW8269; 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxochromen-2-yl)-2-methoxyphenyl]-2-(4-hydroxyphenyl)chromen-4-one; 4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-(5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl)-2-(4-hydroxyphenyl)-; 4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-hydroxyphenyl)-; 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; 5,7-dihydroxy-8-(5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl)-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; Spectrum_001932; Spectrum2_000054; Spectrum3_001727; Spectrum4_001610; Spectrum5_000339; UNII-HY5EZW8269; BSPBio_003374; KBioGR_001959; KBioSS_002476; SCHEMBL888410; SPBio_000207; jm5b01461, Compound 89; KBio2_002469; KBio2_005037; KBio2_007605; KBio3_002594; DTXSID70197416; BDBM429271; HY-N0889; LMPK12040003; MFCD09970948; AKOS015896770; CS-3727; Ginkgetin 7''-O-beta-D-glucopyranoside; 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-chromen-2-yl)-2-methoxy-phenyl]-2-(4-hydroxyphenyl)chromen-4-one; AC-35029; MS-30254; FT-0686623; Q-100523; BRD-K92123432-237-02-8; Q27089352; 3''',8-Biflavone, 4',5,5'',7-tetrahydroxy-4''',7''-dimethoxy-; 4''',5,5'',7''-tetrahydroxy-4',7-dimethoxy-(3'->8'')-biflavone

    Click to Show/Hide
Structure
Formula
C32H22O10
IUPAC Name
5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxochromen-2-yl)-2-methoxyphenyl]-2-(4-hydroxyphenyl)chromen-4-one
Canonical SMILES
COC1=C(C=C(C=C1)C2=CC(=O)C3=C(C=C(C=C3O2)OC)O)C4=C(C=C(C5=C4OC(=CC5=O)C6=CC=C(C=C6)O)O)O
InChI
InChI=1S/C32H22O10/c1-39-18-10-20(34)30-23(37)13-27(41-28(30)11-18)16-5-8-25(40-2)19(9-16)29-21(35)12-22(36)31-24(38)14-26(42-32(29)31)15-3-6-17(33)7-4-15/h3-14,33-36H,1-2H3
InChIKey
AIFCFBUSLAEIBR-UHFFFAOYSA-N
PubChem CID
5271805
Full List of Ferroptosis Target Related to This Drug
Phospholipid hydroperoxide glutathione peroxidase (GPX4)
In total 1 item(s) under this Target
Experiment 1 Reporting the Ferroptosis-centered Drug Act on This Target [1]
Target for Ferroptosis Suppressor
Responsed Disease Lung cancer ICD-11: 2C25
Pathway Response Fatty acid metabolism hsa01212
Ferroptosis hsa04216
Cell Process Cell ferroptosis
Cell apoptosis
In Vitro Model A-549 cells Lung adenocarcinoma Homo sapiens CVCL_0023
NCI-H460 cells Lung large cell carcinoma Homo sapiens CVCL_0459
SPC-A1 cells Endocervical adenocarcinoma Homo sapiens CVCL_6955
In Vivo Model
Briefly, when tumours on transplanted nude mice reached around 100 mm3, the mice were randomized divided into eight groups: control, ginkgetin, DDP, ginkgetin + DDP, UAMC 3203, ginkgetin + UAMC 3203, DDP + UAMC 3203, ginkgetin + DDP + UAMC 3203. Both DDP (3 mg/kg) and ginkgetin (30 mg/kg) were administered by intraperitoneal injection, with 2 - 3 times per week and once per day, respectively. UAMC 3203 (10 mg/kg) was administered 5 days/week by intraperitoneally injection. Tumour size and body weight were measured 3 times per week. After dosing 31 days, the nude mice were sacrificed, and tumours were removed and weighed.

    Click to Show/Hide
Response regulation The induction of ferroptosis mediated by ginkgetin was further confirmed by the decreased expression of SLC7A11 and GPX4, and a decreased GSH/GSSG ratio. Simultaneously, ginkgetin disrupted redox hemostasis in DDP-treated cells, as demonstrated by the enhanced ROS formation and inactivation of the Nrf2/HO-1 axis. Ginkgetin also enhanced DDP-induced mitochondrial membrane potential (MMP) loss and apoptosis in cultured non-small cell lung cancer (NSCLC) cells.
Nuclear factor erythroid 2-related factor 2 (NFE2L2)
In total 1 item(s) under this Target
Experiment 1 Reporting the Ferroptosis-centered Drug Act on This Target [1]
Target for Ferroptosis Marker/Suppressor
Responsed Disease Lung cancer ICD-11: 2C25
Pathway Response Fatty acid metabolism hsa01212
Ferroptosis hsa04216
Cell Process Cell ferroptosis
Cell apoptosis
In Vitro Model A-549 cells Lung adenocarcinoma Homo sapiens CVCL_0023
NCI-H460 cells Lung large cell carcinoma Homo sapiens CVCL_0459
SPC-A1 cells Endocervical adenocarcinoma Homo sapiens CVCL_6955
In Vivo Model
Briefly, when tumours on transplanted nude mice reached around 100 mm3, the mice were randomized divided into eight groups: control, ginkgetin, DDP, ginkgetin + DDP, UAMC 3203, ginkgetin + UAMC 3203, DDP + UAMC 3203, ginkgetin + DDP + UAMC 3203. Both DDP (3 mg/kg) and ginkgetin (30 mg/kg) were administered by intraperitoneal injection, with 2 - 3 times per week and once per day, respectively. UAMC 3203 (10 mg/kg) was administered 5 days/week by intraperitoneally injection. Tumour size and body weight were measured 3 times per week. After dosing 31 days, the nude mice were sacrificed, and tumours were removed and weighed.

    Click to Show/Hide
Response regulation The induction of ferroptosis mediated by ginkgetin was further confirmed by the decreased expression of SLC7A11 and GPX4, and a decreased GSH/GSSG ratio. Simultaneously, ginkgetin disrupted redox hemostasis in DDP-treated cells, as demonstrated by the enhanced ROS formation and inactivation of the Nrf2/HO-1 axis. Ginkgetin also enhanced DDP-induced mitochondrial membrane potential (MMP) loss and apoptosis in cultured non-small cell lung cancer (NSCLC) cells.
Heme oxygenase 1 (HMOX1)
In total 1 item(s) under this Target
Experiment 1 Reporting the Ferroptosis-centered Drug Act on This Target [1]
Target for Ferroptosis Suppressor
Responsed Disease Lung cancer ICD-11: 2C25
Pathway Response Fatty acid metabolism hsa01212
Ferroptosis hsa04216
Cell Process Cell ferroptosis
Cell apoptosis
In Vitro Model A-549 cells Lung adenocarcinoma Homo sapiens CVCL_0023
NCI-H460 cells Lung large cell carcinoma Homo sapiens CVCL_0459
SPC-A1 cells Endocervical adenocarcinoma Homo sapiens CVCL_6955
In Vivo Model
Briefly, when tumours on transplanted nude mice reached around 100 mm3, the mice were randomized divided into eight groups: control, ginkgetin, DDP, ginkgetin + DDP, UAMC 3203, ginkgetin + UAMC 3203, DDP + UAMC 3203, ginkgetin + DDP + UAMC 3203. Both DDP (3 mg/kg) and ginkgetin (30 mg/kg) were administered by intraperitoneal injection, with 2 - 3 times per week and once per day, respectively. UAMC 3203 (10 mg/kg) was administered 5 days/week by intraperitoneally injection. Tumour size and body weight were measured 3 times per week. After dosing 31 days, the nude mice were sacrificed, and tumours were removed and weighed.

    Click to Show/Hide
Response regulation The induction of ferroptosis mediated by ginkgetin was further confirmed by the decreased expression of SLC7A11 and GPX4, and a decreased GSH/GSSG ratio. Simultaneously, ginkgetin disrupted redox hemostasis in DDP-treated cells, as demonstrated by the enhanced ROS formation and inactivation of the Nrf2/HO-1 axis. Ginkgetin also enhanced DDP-induced mitochondrial membrane potential (MMP) loss and apoptosis in cultured non-small cell lung cancer (NSCLC) cells.
Cystine/glutamate transporter (SLC7A11)
In total 1 item(s) under this Target
Experiment 1 Reporting the Ferroptosis-centered Drug Act on This Target [1]
Target for Ferroptosis Suppressor
Responsed Disease Lung cancer ICD-11: 2C25
Pathway Response Fatty acid metabolism hsa01212
Ferroptosis hsa04216
Cell Process Cell ferroptosis
Cell apoptosis
In Vitro Model A-549 cells Lung adenocarcinoma Homo sapiens CVCL_0023
NCI-H460 cells Lung large cell carcinoma Homo sapiens CVCL_0459
SPC-A1 cells Endocervical adenocarcinoma Homo sapiens CVCL_6955
In Vivo Model
Briefly, when tumours on transplanted nude mice reached around 100 mm3, the mice were randomized divided into eight groups: control, ginkgetin, DDP, ginkgetin + DDP, UAMC 3203, ginkgetin + UAMC 3203, DDP + UAMC 3203, ginkgetin + DDP + UAMC 3203. Both DDP (3 mg/kg) and ginkgetin (30 mg/kg) were administered by intraperitoneal injection, with 2 - 3 times per week and once per day, respectively. UAMC 3203 (10 mg/kg) was administered 5 days/week by intraperitoneally injection. Tumour size and body weight were measured 3 times per week. After dosing 31 days, the nude mice were sacrificed, and tumours were removed and weighed.

    Click to Show/Hide
Response regulation The induction of ferroptosis mediated by ginkgetin was further confirmed by the decreased expression of SLC7A11 and GPX4, and a decreased GSH/GSSG ratio. Simultaneously, ginkgetin disrupted redox hemostasis in DDP-treated cells, as demonstrated by the enhanced ROS formation and inactivation of the Nrf2/HO-1 axis. Ginkgetin also enhanced DDP-induced mitochondrial membrane potential (MMP) loss and apoptosis in cultured non-small cell lung cancer (NSCLC) cells.
References
Ref 1 Ginkgetin derived from Ginkgo biloba leaves enhances the therapeutic effect of cisplatin via ferroptosis-mediated disruption of the Nrf2/HO-1 axis in EGFR wild-type non-small-cell lung cancer. Phytomedicine. 2021 Jan;80:153370. doi: 10.1016/j.phymed.2020.153370. Epub 2020 Oct 9.