General Information of the Ferroptosis Regulator (ID: REG30070)
Regulator Name KCNQ1OT1 (IncRNA)
Synonyms
KCNQ1OT1
    Click to Show/Hide
Gene Name KCNQ1OT1
Gene ID 10984
Regulator Type lncRNA
Ensembl ID ENSG00000269821
HGNC ID
HGNC:6295
Full List of the Ferroptosis Target of This Regulator and Corresponding Disease/Drug Response(s)
KCNQ1OT1 can regulate the following target(s), and cause disease/drug response(s). You can browse detail information of target(s) or disease/drug response(s).
Browse Target
Browse Disease
Browse Drug
Transferrin receptor protein 1 (TFRC) [Driver; Suppressor; Marker]
In total 2 item(s) under this target
Experiment 1 Reporting the Ferroptosis Target of This Regulator [1]
Target for Ferroptosis Marker/Suppressor/Driver
Responsed Disease Cardiomyopathy ICD-11: BC43
Responsed Drug Doxorubicin Investigative
Pathway Response Fatty acid metabolism hsa01212
Ferroptosis hsa04216
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
AC16 [Human hybrid cardiomyocyte] cells Normal Homo sapiens CVCL_4U18
In Vivo Model
Male Sprague-Dawley rats (6-8 weeks old; weighed from 210 to 230 g) were purchased from HFK Bioscience Co. Ltd. Rats were randomly assigned to four groups (n = 6 per group). The first was the control group, which were treated daily with 0.5 ml of 0.9% saline by intraperitoneal injection for 14 days, and there were three DOX model groups, which were treated three times weekly with 2.5 mg/kg of DOX by intraperitoneal injection for 14 weeks. At day 14, mice in the DOX model groups were infected through an intramyocardial injection of either control shNC or shMettl14 (1 x 109 titer) at three distinct locations in the left ventricular free wall three times a week for 2 weeks, and they were treated daily with 30 mg/kg of ferroptosis inducer erastin (MedChemExpress, USA) through intragastric administration or vehicle control (Saline) for 2 weeks.

    Click to Show/Hide
Response regulation Doxorubicin treatment resulted in the upregulation of methyltransferase-like 14 (METTL14), which catalyzes the m6A modification of the long non-coding RNA KCNQ1OT1, a miR-7-5p sponge. And miR-7-5p inhibits DOX-induced ferroptosis in cardiomyocytes by directly repressing TFRC. Inhibiting ferroptosis mediated by a METTL14/KCNQ1OT1/miR-7-5p positive feedback loop in cardiomyocytes could provide a new therapeutic approach to control DOX-induced cardiac injury.
Experiment 2 Reporting the Ferroptosis Target of This Regulator [1]
Target for Ferroptosis Marker/Suppressor/Driver
Responsed Disease Cardiomyopathy ICD-11: BC43
Pathway Response Fatty acid metabolism hsa01212
Ferroptosis hsa04216
Cell Process Cell ferroptosis
In Vitro Model
AC16 [Human hybrid cardiomyocyte] cells Normal Homo sapiens CVCL_4U18
In Vivo Model
Male Sprague-Dawley rats (6-8 weeks old; weighed from 210 to 230 g) were purchased from HFK Bioscience Co. Ltd. Rats were randomly assigned to four groups (n = 6 per group). The first was the control group, which were treated daily with 0.5 ml of 0.9% saline by intraperitoneal injection for 14 days, and there were three DOX model groups, which were treated three times weekly with 2.5 mg/kg of DOX by intraperitoneal injection for 14 weeks. At day 14, mice in the DOX model groups were infected through an intramyocardial injection of either control shNC or shMettl14 (1 x 109 titer) at three distinct locations in the left ventricular free wall three times a week for 2 weeks, and they were treated daily with 30 mg/kg of ferroptosis inducer erastin (MedChemExpress, USA) through intragastric administration or vehicle control (Saline) for 2 weeks.

    Click to Show/Hide
Response regulation The RNA-binding protein IGF2BP1 is associated with KCNQ1OT1 to increase its stability and robustly inhibit miR-7-5p activity. MiR-7-5p could effectively suppress METLL14 and TFRC expression. The study suggested a therapeutic strategy to alleviate doxorubicin (DOX)-induced cardiomyopathy.
Cardiomyopathy [ICD-11: BC43]
In total 2 item(s) under this disease
Experiment 1 Reporting the Ferroptosis-centered Disease Response [1]
Target Regulator KCNQ1OT1 (IncRNA) lncRNA
Responsed Drug Doxorubicin Investigative
Pathway Response Fatty acid metabolism hsa01212
Ferroptosis hsa04216
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
AC16 [Human hybrid cardiomyocyte] cells Normal Homo sapiens CVCL_4U18
In Vivo Model
Male Sprague-Dawley rats (6-8 weeks old; weighed from 210 to 230 g) were purchased from HFK Bioscience Co. Ltd. Rats were randomly assigned to four groups (n = 6 per group). The first was the control group, which were treated daily with 0.5 ml of 0.9% saline by intraperitoneal injection for 14 days, and there were three DOX model groups, which were treated three times weekly with 2.5 mg/kg of DOX by intraperitoneal injection for 14 weeks. At day 14, mice in the DOX model groups were infected through an intramyocardial injection of either control shNC or shMettl14 (1 x 109 titer) at three distinct locations in the left ventricular free wall three times a week for 2 weeks, and they were treated daily with 30 mg/kg of ferroptosis inducer erastin (MedChemExpress, USA) through intragastric administration or vehicle control (Saline) for 2 weeks.

    Click to Show/Hide
Response regulation Doxorubicin treatment resulted in the upregulation of methyltransferase-like 14 (METTL14), which catalyzes the m6A modification of the long non-coding RNA KCNQ1OT1, a miR-7-5p sponge. And miR-7-5p inhibits DOX-induced ferroptosis in cardiomyocytes by directly repressing TFRC. Inhibiting ferroptosis mediated by a METTL14/KCNQ1OT1/miR-7-5p positive feedback loop in cardiomyocytes could provide a new therapeutic approach to control DOX-induced cardiac injury.
Experiment 2 Reporting the Ferroptosis-centered Disease Response [1]
Target Regulator KCNQ1OT1 (IncRNA) lncRNA
Pathway Response Fatty acid metabolism hsa01212
Ferroptosis hsa04216
Cell Process Cell ferroptosis
In Vitro Model
AC16 [Human hybrid cardiomyocyte] cells Normal Homo sapiens CVCL_4U18
In Vivo Model
Male Sprague-Dawley rats (6-8 weeks old; weighed from 210 to 230 g) were purchased from HFK Bioscience Co. Ltd. Rats were randomly assigned to four groups (n = 6 per group). The first was the control group, which were treated daily with 0.5 ml of 0.9% saline by intraperitoneal injection for 14 days, and there were three DOX model groups, which were treated three times weekly with 2.5 mg/kg of DOX by intraperitoneal injection for 14 weeks. At day 14, mice in the DOX model groups were infected through an intramyocardial injection of either control shNC or shMettl14 (1 x 109 titer) at three distinct locations in the left ventricular free wall three times a week for 2 weeks, and they were treated daily with 30 mg/kg of ferroptosis inducer erastin (MedChemExpress, USA) through intragastric administration or vehicle control (Saline) for 2 weeks.

    Click to Show/Hide
Response regulation The RNA-binding protein IGF2BP1 is associated with KCNQ1OT1 to increase its stability and robustly inhibit miR-7-5p activity. MiR-7-5p could effectively suppress METLL14 and TFRC expression. The study suggested a therapeutic strategy to alleviate doxorubicin (DOX)-induced cardiomyopathy.
Doxorubicin [Investigative]
In total 1 item(s) under this drug
Experiment 1 Reporting the Ferroptosis-centered Drug Response [1]
Drug for Ferroptosis Inducer
Response Target Transferrin receptor protein 1 (TFRC) Driver; Suppressor; Marker
Responsed Disease Cardiomyopathy ICD-11: BC43
Pathway Response Fatty acid metabolism hsa01212
Ferroptosis hsa04216
Cell Process Cell ferroptosis
Cell proliferation
In Vitro Model
AC16 [Human hybrid cardiomyocyte] cells Normal Homo sapiens CVCL_4U18
In Vivo Model
Male Sprague-Dawley rats (6-8 weeks old; weighed from 210 to 230 g) were purchased from HFK Bioscience Co. Ltd. Rats were randomly assigned to four groups (n = 6 per group). The first was the control group, which were treated daily with 0.5 ml of 0.9% saline by intraperitoneal injection for 14 days, and there were three DOX model groups, which were treated three times weekly with 2.5 mg/kg of DOX by intraperitoneal injection for 14 weeks. At day 14, mice in the DOX model groups were infected through an intramyocardial injection of either control shNC or shMettl14 (1 x 109 titer) at three distinct locations in the left ventricular free wall three times a week for 2 weeks, and they were treated daily with 30 mg/kg of ferroptosis inducer erastin (MedChemExpress, USA) through intragastric administration or vehicle control (Saline) for 2 weeks.

    Click to Show/Hide
Response regulation Doxorubicin treatment resulted in the upregulation of methyltransferase-like 14 (METTL14), which catalyzes the m6A modification of the long non-coding RNA KCNQ1OT1, a miR-7-5p sponge. And miR-7-5p inhibits DOX-induced ferroptosis in cardiomyocytes by directly repressing TFRC. Inhibiting ferroptosis mediated by a METTL14/KCNQ1OT1/miR-7-5p positive feedback loop in cardiomyocytes could provide a new therapeutic approach to control DOX-induced cardiac injury.
References
Ref 1 METTL14 promotes doxorubicin-induced cardiomyocyte ferroptosis by regulating the KCNQ1OT1-miR-7-5p-TFRC axis. Cell Biol Toxicol. 2023 Jun;39(3):1015-1035. doi: 10.1007/s10565-021-09660-7. Epub 2021 Oct 14.