Ferroptosis Regulator Information
General Information of the Ferroptosis Regulator (ID: REG10485)
Full List of the Ferroptosis Target of This Regulator and Corresponding Disease/Drug Response(s)
NFKBIA
can regulate the following target(s), and cause disease/drug response(s). You can browse detail information of target(s) or disease/drug response(s).
Browse Target
Browse Disease
Browse Drug
Cystine/glutamate transporter (SLC7A11) [Driver; Suppressor]
In total 1 item(s) under this target | |||||
Experiment 1 Reporting the Ferroptosis Target of This Regulator | [1] | ||||
Target for Ferroptosis | Suppressor | ||||
Responsed Disease | Glioblastoma | ICD-11: 2A00 | |||
Responsed Drug | RSL3 | Investigative | |||
Pathway Response | NF-kappa B signaling pathway | hsa04064 | |||
Fatty acid metabolism | hsa01212 | ||||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
Cell proliferation | |||||
In Vitro Model |
U87 MG-Red-Fluc cells | Glioblastoma | Homo sapiens | CVCL_5J12 | |
U-251MG cells | Astrocytoma | Homo sapiens | CVCL_0021 | ||
In Vivo Model |
Female B-NDG mice (4-6 weeks old, 16-20 g) were purchased from Biocytogen (Biocytogen Jiangsu Co., Ltd., Jiangsu, China) and housed under specific pathogen-free conditions. 5 x 106 U87 cells were resuspended in 200 uL PBS buffer and then inoculated into the left hind limb of each mouse. Once tumor volumes reached >=50 mm3, the mice were randomly divided into four groups (n = 5): the control, RSL3-only, BAY-only, and RSL3 plus BAY groups. Chemicals were administered through intratumor injection (100 mg/kg for RSL3 and 1 mg/kg for BAY 11-7082) biweekly for two weeks.
Click to Show/Hide
|
||||
Response regulation | NF-kB pathway activation is vital for RSL3-induced ferroptosis in glioblastoma cells both in vitro and in vivo. Furthermore, RNAi-mediated GPX4 silencing cannot trigger ferroptosis in glioblastoma cells unless the NF-kB pathway is activated simultaneously. Finally, NF-kB pathway activation promotes ferroptosis by downregulating the expression of ATF4 and SLC7A11. | ||||
Glioblastoma [ICD-11: 2A00]
In total 1 item(s) under this disease | |||||
Experiment 1 Reporting the Ferroptosis-centered Disease Response | [1] | ||||
Target Regulator | NF-kappa-B inhibitor alpha (NFKBIA) | Protein coding | |||
Responsed Drug | RSL3 | Investigative | |||
Pathway Response | NF-kappa B signaling pathway | hsa04064 | |||
Fatty acid metabolism | hsa01212 | ||||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
Cell proliferation | |||||
In Vitro Model |
U87 MG-Red-Fluc cells | Glioblastoma | Homo sapiens | CVCL_5J12 | |
U-251MG cells | Astrocytoma | Homo sapiens | CVCL_0021 | ||
In Vivo Model |
Female B-NDG mice (4-6 weeks old, 16-20 g) were purchased from Biocytogen (Biocytogen Jiangsu Co., Ltd., Jiangsu, China) and housed under specific pathogen-free conditions. 5 x 106 U87 cells were resuspended in 200 uL PBS buffer and then inoculated into the left hind limb of each mouse. Once tumor volumes reached >=50 mm3, the mice were randomly divided into four groups (n = 5): the control, RSL3-only, BAY-only, and RSL3 plus BAY groups. Chemicals were administered through intratumor injection (100 mg/kg for RSL3 and 1 mg/kg for BAY 11-7082) biweekly for two weeks.
Click to Show/Hide
|
||||
Response regulation | NF-kB pathway activation is vital for RSL3-induced ferroptosis in glioblastoma cells both in vitro and in vivo. Furthermore, RNAi-mediated GPX4 silencing cannot trigger ferroptosis in glioblastoma cells unless the NF-kB pathway is activated simultaneously. Finally, NF-kB pathway activation promotes ferroptosis by downregulating the expression of ATF4 and SLC7A11. | ||||
RSL3
[Investigative]
In total 1 item(s) under this drug | |||||
Experiment 1 Reporting the Ferroptosis-centered Drug Response | [1] | ||||
Drug for Ferroptosis | Inducer | ||||
Response Target | Cystine/glutamate transporter (SLC7A11) | Driver; Suppressor | |||
Responsed Disease | Glioblastoma | ICD-11: 2A00 | |||
Pathway Response | NF-kappa B signaling pathway | hsa04064 | |||
Fatty acid metabolism | hsa01212 | ||||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
Cell proliferation | |||||
In Vitro Model |
U87 MG-Red-Fluc cells | Glioblastoma | Homo sapiens | CVCL_5J12 | |
U-251MG cells | Astrocytoma | Homo sapiens | CVCL_0021 | ||
In Vivo Model |
Female B-NDG mice (4-6 weeks old, 16-20 g) were purchased from Biocytogen (Biocytogen Jiangsu Co., Ltd., Jiangsu, China) and housed under specific pathogen-free conditions. 5 x 106 U87 cells were resuspended in 200 uL PBS buffer and then inoculated into the left hind limb of each mouse. Once tumor volumes reached >=50 mm3, the mice were randomly divided into four groups (n = 5): the control, RSL3-only, BAY-only, and RSL3 plus BAY groups. Chemicals were administered through intratumor injection (100 mg/kg for RSL3 and 1 mg/kg for BAY 11-7082) biweekly for two weeks.
Click to Show/Hide
|
||||
Response regulation | NF-kB pathway activation is vital for RSL3-induced ferroptosis in glioblastoma cells both in vitro and in vivo. Furthermore, RNAi-mediated GPX4 silencing cannot trigger ferroptosis in glioblastoma cells unless the NF-kB pathway is activated simultaneously. Finally, NF-kB pathway activation promotes ferroptosis by downregulating the expression of ATF4 and SLC7A11. | ||||