Ferroptosis Regulator Information
General Information of the Ferroptosis Regulator (ID: REG10192)
Full List of the Ferroptosis Target of This Regulator and Corresponding Disease/Drug Response(s)
HSF1
can regulate the following target(s), and cause disease/drug response(s). You can browse detail information of target(s) or disease/drug response(s).
Browse Target
Browse Disease
Browse Drug
Heat shock protein beta-1 (HSPB1) [Suppressor; Marker]
In total 2 item(s) under this target | |||||
Experiment 1 Reporting the Ferroptosis Target of This Regulator | [1] | ||||
Target for Ferroptosis | Marker/Suppressor | ||||
Responsed Disease | Cervical cancer | ICD-11: 2C77 | |||
Responsed Drug | Erastin | Investigative | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
In Vitro Model |
HeLa cells | Endocervical adenocarcinoma | Homo sapiens | CVCL_0030 | |
U2OS cells | Osteosarcoma | Homo sapiens | CVCL_0042 | ||
LNCaP cells | Prostate carcinoma | Homo sapiens | CVCL_0395 | ||
In Vivo Model |
Indicated HeLa cells were subcutaneously injected into the dorsal flanks right of the midline in SCID mice (weight ~20 g). At day seven, mice were injected with erastin (20 mg/kg/ i.v., twice daily every other day) with or without KRIBB3 (50 mg/kg/ i.p., once daily every other day) for two weeks. Erastin was dissolved in vehicle (2% DMSO and 98% phosphate buffered saline) and prepared by Ultrasonic Cleaner (Fisher Scientific). A final volume of 300 ul erastin was applied through the tail vein. The Rodent Tail Vein Catheter (Braintree Scientific, MTV#1) were used to perform injection.
Click to Show/Hide
|
||||
Response regulation | Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 ( HSF1)-dependent HSPB1 expression in endocervical adenocarcinoma cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. | ||||
Experiment 2 Reporting the Ferroptosis Target of This Regulator | [1] | ||||
Target for Ferroptosis | Marker/Suppressor | ||||
Responsed Disease | Cervical cancer | ICD-11: 2C77 | |||
Responsed Drug | Erastin | Investigative | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
In Vitro Model |
HeLa cells | Endocervical adenocarcinoma | Homo sapiens | CVCL_0030 | |
U2OS cells | Osteosarcoma | Homo sapiens | CVCL_0042 | ||
LNCaP cells | Prostate carcinoma | Homo sapiens | CVCL_0395 | ||
In Vivo Model |
Indicated HeLa cells were subcutaneously injected into the dorsal flanks right of the midline in SCID mice (weight ~20 g). At day seven, mice were injected with erastin (20 mg/kg/ i.v., twice daily every other day) with or without KRIBB3 (50 mg/kg/ i.p., once daily every other day) for two weeks. Erastin was dissolved in vehicle (2% DMSO and 98% phosphate buffered saline) and prepared by Ultrasonic Cleaner (Fisher Scientific). A final volume of 300 ul erastin was applied through the tail vein. The Rodent Tail Vein Catheter (Braintree Scientific, MTV#1) were used to perform injection.
Click to Show/Hide
|
||||
Response regulation | Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 (HSF1)-dependent HSPB1 expression in endocervical adenocarcinoma cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. | ||||
Phospholipid hydroperoxide glutathione peroxidase (GPX4) [Suppressor]
In total 1 item(s) under this target | |||||
Experiment 1 Reporting the Ferroptosis Target of This Regulator | [2] | ||||
Target for Ferroptosis | Suppressor | ||||
Responsed Disease | Health | ICD-11: N.A. | |||
Responsed Drug | Palmitic acid | Investigative | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
In Vitro Model |
CHO-S/H9C2 cells | Normal | Cricetulus griseus | CVCL_A0TS | |
In Vivo Model |
Hsf1 and Hsf1+/+-/- mice were kindly given as a present by Dr. Ivor J. Benjamin (Froedtert & Medical College of Wisconsin, Milwaukee, WI, USA). Sex-matched Hsf1-/- mice and Hsf1 littermates were used at 16-20 weeks old. Each mouse was injected intraperitoneally with 2.5 umol PA (dissolved in 0.5 mL 10% BSA) or an equal volume of BSA twice daily for 7 days.
Click to Show/Hide
|
||||
Response regulation | Palmitic acid (PA) decreased the protein expression levels of both heat shock factor 1 (HSF1) and glutathione peroxidase 4 (GPX4) in a dose- and time-dependent manner, which were restored by different ferroptosis inhibitors. Altogether, HSF1 may function as a key defender against PA-induced ferroptosis in cardiomyocytes by maintaining cellular iron homeostasis and GPX4 expression. | ||||
Cervical cancer [ICD-11: 2C77]
In total 2 item(s) under this disease | |||||
Experiment 1 Reporting the Ferroptosis-centered Disease Response | [1] | ||||
Target Regulator | Heat shock factor protein 1 (HSF1) | Protein coding | |||
Responsed Drug | Erastin | Investigative | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
In Vitro Model |
HeLa cells | Endocervical adenocarcinoma | Homo sapiens | CVCL_0030 | |
U2OS cells | Osteosarcoma | Homo sapiens | CVCL_0042 | ||
LNCaP cells | Prostate carcinoma | Homo sapiens | CVCL_0395 | ||
In Vivo Model |
Indicated HeLa cells were subcutaneously injected into the dorsal flanks right of the midline in SCID mice (weight ~20 g). At day seven, mice were injected with erastin (20 mg/kg/ i.v., twice daily every other day) with or without KRIBB3 (50 mg/kg/ i.p., once daily every other day) for two weeks. Erastin was dissolved in vehicle (2% DMSO and 98% phosphate buffered saline) and prepared by Ultrasonic Cleaner (Fisher Scientific). A final volume of 300 ul erastin was applied through the tail vein. The Rodent Tail Vein Catheter (Braintree Scientific, MTV#1) were used to perform injection.
Click to Show/Hide
|
||||
Response regulation | Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 ( HSF1)-dependent HSPB1 expression in endocervical adenocarcinoma cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. | ||||
Experiment 2 Reporting the Ferroptosis-centered Disease Response | [1] | ||||
Target Regulator | Heat shock factor protein 1 (HSF1) | Protein coding | |||
Responsed Drug | Erastin | Investigative | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
In Vitro Model |
HeLa cells | Endocervical adenocarcinoma | Homo sapiens | CVCL_0030 | |
U2OS cells | Osteosarcoma | Homo sapiens | CVCL_0042 | ||
LNCaP cells | Prostate carcinoma | Homo sapiens | CVCL_0395 | ||
In Vivo Model |
Indicated HeLa cells were subcutaneously injected into the dorsal flanks right of the midline in SCID mice (weight ~20 g). At day seven, mice were injected with erastin (20 mg/kg/ i.v., twice daily every other day) with or without KRIBB3 (50 mg/kg/ i.p., once daily every other day) for two weeks. Erastin was dissolved in vehicle (2% DMSO and 98% phosphate buffered saline) and prepared by Ultrasonic Cleaner (Fisher Scientific). A final volume of 300 ul erastin was applied through the tail vein. The Rodent Tail Vein Catheter (Braintree Scientific, MTV#1) were used to perform injection.
Click to Show/Hide
|
||||
Response regulation | Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 (HSF1)-dependent HSPB1 expression in endocervical adenocarcinoma cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. | ||||
Health [ICD-11: N.A.]
In total 1 item(s) under this disease | |||||
Experiment 1 Reporting the Ferroptosis-centered Disease Response | [2] | ||||
Target Regulator | Heat shock factor protein 1 (HSF1) | Protein coding | |||
Responsed Drug | Palmitic acid | Investigative | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
In Vitro Model |
CHO-S/H9C2 cells | Normal | Cricetulus griseus | CVCL_A0TS | |
In Vivo Model |
Hsf1 and Hsf1+/+-/- mice were kindly given as a present by Dr. Ivor J. Benjamin (Froedtert & Medical College of Wisconsin, Milwaukee, WI, USA). Sex-matched Hsf1-/- mice and Hsf1 littermates were used at 16-20 weeks old. Each mouse was injected intraperitoneally with 2.5 umol PA (dissolved in 0.5 mL 10% BSA) or an equal volume of BSA twice daily for 7 days.
Click to Show/Hide
|
||||
Response regulation | Palmitic acid (PA) decreased the protein expression levels of both heat shock factor 1 (HSF1) and glutathione peroxidase 4 (GPX4) in a dose- and time-dependent manner, which were restored by different ferroptosis inhibitors. Altogether, HSF1 may function as a key defender against PA-induced ferroptosis in cardiomyocytes by maintaining cellular iron homeostasis and GPX4 expression. | ||||
Erastin
[Investigative]
In total 2 item(s) under this drug | |||||
Experiment 1 Reporting the Ferroptosis-centered Drug Response | [1] | ||||
Drug for Ferroptosis | Suppressor | ||||
Response Target | Heat shock protein beta-1 (HSPB1) | Suppressor; Marker | |||
Responsed Disease | Cervical cancer | ICD-11: 2C77 | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
In Vitro Model |
HeLa cells | Endocervical adenocarcinoma | Homo sapiens | CVCL_0030 | |
U2OS cells | Osteosarcoma | Homo sapiens | CVCL_0042 | ||
LNCaP cells | Prostate carcinoma | Homo sapiens | CVCL_0395 | ||
In Vivo Model |
Indicated HeLa cells were subcutaneously injected into the dorsal flanks right of the midline in SCID mice (weight ~20 g). At day seven, mice were injected with erastin (20 mg/kg/ i.v., twice daily every other day) with or without KRIBB3 (50 mg/kg/ i.p., once daily every other day) for two weeks. Erastin was dissolved in vehicle (2% DMSO and 98% phosphate buffered saline) and prepared by Ultrasonic Cleaner (Fisher Scientific). A final volume of 300 ul erastin was applied through the tail vein. The Rodent Tail Vein Catheter (Braintree Scientific, MTV#1) were used to perform injection.
Click to Show/Hide
|
||||
Response regulation | Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 ( HSF1)-dependent HSPB1 expression in endocervical adenocarcinoma cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. | ||||
Experiment 2 Reporting the Ferroptosis-centered Drug Response | [1] | ||||
Drug for Ferroptosis | Suppressor | ||||
Response Target | Heat shock protein beta-1 (HSPB1) | Suppressor; Marker | |||
Responsed Disease | Cervical cancer | ICD-11: 2C77 | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
In Vitro Model |
HeLa cells | Endocervical adenocarcinoma | Homo sapiens | CVCL_0030 | |
U2OS cells | Osteosarcoma | Homo sapiens | CVCL_0042 | ||
LNCaP cells | Prostate carcinoma | Homo sapiens | CVCL_0395 | ||
In Vivo Model |
Indicated HeLa cells were subcutaneously injected into the dorsal flanks right of the midline in SCID mice (weight ~20 g). At day seven, mice were injected with erastin (20 mg/kg/ i.v., twice daily every other day) with or without KRIBB3 (50 mg/kg/ i.p., once daily every other day) for two weeks. Erastin was dissolved in vehicle (2% DMSO and 98% phosphate buffered saline) and prepared by Ultrasonic Cleaner (Fisher Scientific). A final volume of 300 ul erastin was applied through the tail vein. The Rodent Tail Vein Catheter (Braintree Scientific, MTV#1) were used to perform injection.
Click to Show/Hide
|
||||
Response regulation | Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 (HSF1)-dependent HSPB1 expression in endocervical adenocarcinoma cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. | ||||
Palmitic acid
[Investigative]
In total 1 item(s) under this drug | |||||
Experiment 1 Reporting the Ferroptosis-centered Drug Response | [2] | ||||
Drug for Ferroptosis | Inducer | ||||
Response Target | Phospholipid hydroperoxide glutathione peroxidase (GPX4) | Suppressor | |||
Responsed Disease | Health | ICD-11: N.A. | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
In Vitro Model |
CHO-S/H9C2 cells | Normal | Cricetulus griseus | CVCL_A0TS | |
In Vivo Model |
Hsf1 and Hsf1+/+-/- mice were kindly given as a present by Dr. Ivor J. Benjamin (Froedtert & Medical College of Wisconsin, Milwaukee, WI, USA). Sex-matched Hsf1-/- mice and Hsf1 littermates were used at 16-20 weeks old. Each mouse was injected intraperitoneally with 2.5 umol PA (dissolved in 0.5 mL 10% BSA) or an equal volume of BSA twice daily for 7 days.
Click to Show/Hide
|
||||
Response regulation | Palmitic acid (PA) decreased the protein expression levels of both heat shock factor 1 (HSF1) and glutathione peroxidase 4 (GPX4) in a dose- and time-dependent manner, which were restored by different ferroptosis inhibitors. Altogether, HSF1 may function as a key defender against PA-induced ferroptosis in cardiomyocytes by maintaining cellular iron homeostasis and GPX4 expression. | ||||
References