Ferroptosis Regulator Information
General Information of the Ferroptosis Regulator (ID: REG10473)
Full List of the Ferroptosis Target of This Regulator and Corresponding Disease/Drug Response(s)
STAT6
can regulate the following target(s), and cause disease/drug response(s). You can browse detail information of target(s) or disease/drug response(s).
Browse Target
Browse Disease
Cystine/glutamate transporter (SLC7A11) [Driver; Suppressor]
In total 2 item(s) under this target | |||||
Experiment 1 Reporting the Ferroptosis Target of This Regulator | [1] | ||||
Target for Ferroptosis | Suppressor | ||||
Responsed Disease | Lung injury | ICD-11: NB32 | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
In Vitro Model |
THP-1 cells | Childhood acute monocytic leukemia | Homo sapiens | CVCL_0006 | |
HBE1 cells | Normal | Homo sapiens | CVCL_0287 | ||
In Vivo Model |
For the models of CS and LPS exposure, mice were anesthetized and intratracheally instilled with CS suspensions (3 mg/50 ul) or LPS (1 mg/kg). For the models of CS + Ferr-1/DFO, mice were intraperitoneally injected with Ferr-1 (1.25 umol/kg) or intranasal instilled with DFO (10 mg/kg) for 7 consecutive days after CS instillation. For the models of LPS + Ferr-1/DFO, mice were pretreated with Ferr-1 or DFO for 2 consecutive days and then intratracheally instilled with LPS. Mice were sacrificed 24 h after LPS instillation. For the X-ray exposure model, mice were exposed to ionizing radiation (IR) at 20 Gy, which was delivered at the dose rate of 2 Gy/min and a source skin distance of 51 cm by an X-ray generator (Model X-RAD320iX; Precision X-Ray, Inc., North Branford, CT, USA), and sacrificed 3 days after radiation.
Click to Show/Hide
|
||||
Response regulation | STAT6 negatively regulates ferroptosis through competitively binding with CBP, which inhibits P53 acetylation and transcriptionally restores SLC7A11 expression. Finally, pulmonary-specific STAT6 overexpression decreased the ferroptosis and attenuated CS and LPS induced acute lung injury. | ||||
Experiment 2 Reporting the Ferroptosis Target of This Regulator | [1] | ||||
Target for Ferroptosis | Suppressor | ||||
Responsed Disease | Lung injury | ICD-11: NB32 | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
In Vitro Model |
THP-1 cells | Childhood acute monocytic leukemia | Homo sapiens | CVCL_0006 | |
HBE1 cells | Normal | Homo sapiens | CVCL_0287 | ||
In Vivo Model |
For the models of CS and LPS exposure, mice were anesthetized and intratracheally instilled with CS suspensions (3 mg/50 ul) or LPS (1 mg/kg). For the models of CS + Ferr-1/DFO, mice were intraperitoneally injected with Ferr-1 (1.25 umol/kg) or intranasal instilled with DFO (10 mg/kg) for 7 consecutive days after CS instillation. For the models of LPS + Ferr-1/DFO, mice were pretreated with Ferr-1 or DFO for 2 consecutive days and then intratracheally instilled with LPS. Mice were sacrificed 24 h after LPS instillation. For the X-ray exposure model, mice were exposed to ionizing radiation (IR) at 20 Gy, which was delivered at the dose rate of 2 Gy/min and a source skin distance of 51 cm by an X-ray generator (Model X-RAD320iX; Precision X-Ray, Inc., North Branford, CT, USA), and sacrificed 3 days after radiation.
Click to Show/Hide
|
||||
Response regulation | STAT6 negatively regulates ferroptosis through competitively binding with CBP, which inhibits P53 acetylation and transcriptionally restores SLC7A11 expression. Finally, pulmonary-specific STAT6 overexpression decreased the ferroptosis and attenuated CS and LPS induced acute lung injury. | ||||
Lung injury [ICD-11: NB32]
In total 2 item(s) under this disease | |||||
Experiment 1 Reporting the Ferroptosis-centered Disease Response | [1] | ||||
Target Regulator | Signal transducer and activator of transcription 6 (STAT6) | Protein coding | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
In Vitro Model |
THP-1 cells | Childhood acute monocytic leukemia | Homo sapiens | CVCL_0006 | |
HBE1 cells | Normal | Homo sapiens | CVCL_0287 | ||
In Vivo Model |
For the models of CS and LPS exposure, mice were anesthetized and intratracheally instilled with CS suspensions (3 mg/50 ul) or LPS (1 mg/kg). For the models of CS + Ferr-1/DFO, mice were intraperitoneally injected with Ferr-1 (1.25 umol/kg) or intranasal instilled with DFO (10 mg/kg) for 7 consecutive days after CS instillation. For the models of LPS + Ferr-1/DFO, mice were pretreated with Ferr-1 or DFO for 2 consecutive days and then intratracheally instilled with LPS. Mice were sacrificed 24 h after LPS instillation. For the X-ray exposure model, mice were exposed to ionizing radiation (IR) at 20 Gy, which was delivered at the dose rate of 2 Gy/min and a source skin distance of 51 cm by an X-ray generator (Model X-RAD320iX; Precision X-Ray, Inc., North Branford, CT, USA), and sacrificed 3 days after radiation.
Click to Show/Hide
|
||||
Response regulation | STAT6 negatively regulates ferroptosis through competitively binding with CBP, which inhibits P53 acetylation and transcriptionally restores SLC7A11 expression. Finally, pulmonary-specific STAT6 overexpression decreased the ferroptosis and attenuated CS and LPS induced acute lung injury. | ||||
Experiment 2 Reporting the Ferroptosis-centered Disease Response | [1] | ||||
Target Regulator | Signal transducer and activator of transcription 6 (STAT6) | Protein coding | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Cell Process | Cell ferroptosis | ||||
In Vitro Model |
THP-1 cells | Childhood acute monocytic leukemia | Homo sapiens | CVCL_0006 | |
HBE1 cells | Normal | Homo sapiens | CVCL_0287 | ||
In Vivo Model |
For the models of CS and LPS exposure, mice were anesthetized and intratracheally instilled with CS suspensions (3 mg/50 ul) or LPS (1 mg/kg). For the models of CS + Ferr-1/DFO, mice were intraperitoneally injected with Ferr-1 (1.25 umol/kg) or intranasal instilled with DFO (10 mg/kg) for 7 consecutive days after CS instillation. For the models of LPS + Ferr-1/DFO, mice were pretreated with Ferr-1 or DFO for 2 consecutive days and then intratracheally instilled with LPS. Mice were sacrificed 24 h after LPS instillation. For the X-ray exposure model, mice were exposed to ionizing radiation (IR) at 20 Gy, which was delivered at the dose rate of 2 Gy/min and a source skin distance of 51 cm by an X-ray generator (Model X-RAD320iX; Precision X-Ray, Inc., North Branford, CT, USA), and sacrificed 3 days after radiation.
Click to Show/Hide
|
||||
Response regulation | STAT6 negatively regulates ferroptosis through competitively binding with CBP, which inhibits P53 acetylation and transcriptionally restores SLC7A11 expression. Finally, pulmonary-specific STAT6 overexpression decreased the ferroptosis and attenuated CS and LPS induced acute lung injury. | ||||