Ferroptosis-centered Drug Response Information
General Information of the Drug (ID: ferrodrug0358)
Name |
Cyanidin-3-glucoside
|
||||
---|---|---|---|---|---|
Synonyms |
Cyanidin 3-glucoside; 7084-24-4; Cyanidin 3-O-glucoside; cyanidin-3-o-glucoside chloride; 2-[2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromenylium-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol;chloride; 27214-71-7; Chrysanthemin; (2S,3R,4S,5S,6R)-2-[2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromenylium-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol;chloride; C21-H21-O11.Cl; Chrysontemin;Cyanidin 3-O-glucoside chloride; Cyanidin galactoside; Cyanindin-3-Gal; Idaein; Ideain; Ideanin; CHEBI:189578; BCP28559; AKOS015968430; FT-0638681; Chrysontemin; Cyanidin 3-O-glucoside chloride; A818960; 2-[[2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-1-benzopyrylium-3-yl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol chloride; 2-[2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-chromenylium-3-yl]oxy-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol chloride
Click to Show/Hide
|
||||
Structure |
![]() |
||||
3D MOL
|
|||||
Formula |
C21H21ClO11
|
||||
IUPAC Name |
2-[2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromenylium-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol;chloride
|
||||
Canonical SMILES |
C1=CC(=C(C=C1C2=[O+]C3=CC(=CC(=C3C=C2OC4C(C(C(C(O4)CO)O)O)O)O)O)O)O.[Cl-]
|
||||
InChI |
InChI=1S/C21H20O11.ClH/c22-7-16-17(27)18(28)19(29)21(32-16)31-15-6-10-12(25)4-9(23)5-14(10)30-20(15)8-1-2-11(24)13(26)3-8;/h1-6,16-19,21-22,27-29H,7H2,(H3-,23,24,25,26);1H
|
||||
InChIKey |
YTMNONATNXDQJF-UHFFFAOYSA-N
|
||||
PubChem CID |
Full List of Ferroptosis Target Related to This Drug
Transferrin receptor protein 1 (TFRC)
In total 1 item(s) under this Target | |||||
Experiment 1 Reporting the Ferroptosis-centered Drug Act on This Target | [1] | ||||
Target for Ferroptosis | Marker/Suppressor/Driver | ||||
Responsed Disease | Ischemia/reperfusion injury | ICD-11: DB98 | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Autophagy | hsa04140 | ||||
Cell Process | Cell ferroptosis | ||||
Cell proliferation | |||||
Cell autophagy | |||||
In Vitro Model | CHO-S/H9C2 cells | Normal | Cricetulus griseus | CVCL_A0TS | |
In Vivo Model |
Adult male Sprague Dawley (SD) rats weighing 260-280 g were purchased from Qinglongshan Animal Farm (Nanjing, China). After a week of adaptation, the rats were randomly assigned into five groups (n = 8): (1) sham group, rats receiving saline gavage and sham surgery were used as control group; (2) I/R model group, rats receiving saline gavage and left anterior descending (LAD) ligation surgery were used as the model group; (3) C3G-10 group, I/R model plus intraperitoneal injection of 10 mg/kg C3G; (4) C3G-20 group, I/R model plus intraperitoneal injection of 20 mg/kg C3G; and (5) DIL group, I/R model plus oral administration of 20 mg/kg diltiazem. C3G and DIL were dissolved in DMSO and then diluted with saline so that the DMSO concentration was less than 0.1% (v/v).
Click to Show/Hide
|
||||
Response regulation | The administration of Cyanidin-3-glucoside (C3G) reduced the infarction area, mitigated pathological alterations, inhibited ST segment elevation, and attenuated oxidative stress and ferroptosis-related protein expression. C3G also suppressed the expressions of USP19, Beclin1, NCOA4, and LC3II/LC3I. In addition, treatment with C3G relieved oxidative stress, downregulated LC3II/LC3I, reduced autophagosome number, downregulated TfR1 expression, and upregulated the expressions of FTH1 and GPX4 in OGD/R-induced H9c2 cells. Taken together, C3G could be a potential agent to protect myocardium from myocardial ischemia-reperfusion (IR) injury. | ||||
Nuclear receptor coactivator 4 (NCOA4)
In total 1 item(s) under this Target | |||||
Experiment 1 Reporting the Ferroptosis-centered Drug Act on This Target | [1] | ||||
Target for Ferroptosis | Driver | ||||
Responsed Disease | Ischemia/reperfusion injury | ICD-11: DB98 | |||
Pathway Response | Fatty acid metabolism | hsa01212 | |||
Ferroptosis | hsa04216 | ||||
Autophagy | hsa04140 | ||||
Cell Process | Cell ferroptosis | ||||
Cell proliferation | |||||
Cell autophagy | |||||
In Vitro Model | CHO-S/H9C2 cells | Normal | Cricetulus griseus | CVCL_A0TS | |
In Vivo Model |
Adult male Sprague Dawley (SD) rats weighing 260-280 g were purchased from Qinglongshan Animal Farm (Nanjing, China). After a week of adaptation, the rats were randomly assigned into five groups (n = 8): (1) sham group, rats receiving saline gavage and sham surgery were used as control group; (2) I/R model group, rats receiving saline gavage and left anterior descending (LAD) ligation surgery were used as the model group; (3) C3G-10 group, I/R model plus intraperitoneal injection of 10 mg/kg C3G; (4) C3G-20 group, I/R model plus intraperitoneal injection of 20 mg/kg C3G; and (5) DIL group, I/R model plus oral administration of 20 mg/kg diltiazem. C3G and DIL were dissolved in DMSO and then diluted with saline so that the DMSO concentration was less than 0.1% (v/v).
Click to Show/Hide
|
||||
Response regulation | The administration of Cyanidin-3-glucoside (C3G) reduced the infarction area, mitigated pathological alterations, inhibited ST segment elevation, and attenuated oxidative stress and ferroptosis-related protein expression. C3G also suppressed the expressions of USP19, Beclin1, NCOA4, and LC3II/LC3I. In addition, treatment with C3G relieved oxidative stress, downregulated LC3II/LC3I, reduced autophagosome number, downregulated TfR1 expression, and upregulated the expressions of FTH1 and GPX4 in OGD/R-induced H9c2 cells. Taken together, C3G could be a potential agent to protect myocardium from myocardial ischemia-reperfusion (IR) injury. | ||||