General Information of the Ferroptosis Regulator (ID: REG10398)
Regulator Name Serine/threonine-protein kinase PLK1 (PLK1)
Synonyms
PLK; Polo-like kinase 1; Serine/threonine-protein kinase 13
    Click to Show/Hide
Gene Name PLK1
Gene ID 5347
Regulator Type Protein coding
Uniprot ID P53350
Sequence
MSAAVTAGKLARAPADPGKAGVPGVAAPGAPAAAPPAKEIPEVLVDPRSRRRYVRGRFLG
KGGFAKCFEISDADTKEVFAGKIVPKSLLLKPHQREKMSMEISIHRSLAHQHVVGFHGFF
EDNDFVFVVLELCRRRSLLELHKRRKALTEPEARYYLRQIVLGCQYLHRNRVIHRDLKLG
NLFLNEDLEVKIGDFGLATKVEYDGERKKTLCGTPNYIAPEVLSKKGHSFEVDVWSIGCI
MYTLLVGKPPFETSCLKETYLRIKKNEYSIPKHINPVAASLIQKMLQTDPTARPTINELL
NDEFFTSGYIPARLPITCLTIPPRFSIAPSSLDPSNRKPLTVLNKGLENPLPERPREKEE
PVVRETGEVVDCHLSDMLQQLHSVNASKPSERGLVRQEEAEDPACIPIFWVSKWVDYSDK
YGLGYQLCDNSVGVLFNDSTRLILYNDGDSLQYIERDGTESYLTVSSHPNSLMKKITLLK
YFRNYMSEHLLKAGANITPREGDELARLPYLRTWFRTRSAIILHLSNGSVQINFFQDHTK
LILCPLMAAVTYIDEKRDFRTYRLSLLEEYGCCKELASRLRYARTMVDKLLSSRSASNRL
KAS

    Click to Show/Hide
Family Ser/Thr protein kinase family
Function
Serine/threonine-protein kinase that performs several important functions throughout M phase of the cell cycle, including the regulation of centrosome maturation and spindle assembly, the removal of cohesins from chromosome arms, the inactivation of anaphase- promoting complex/cyclosome (APC/C) inhibitors, and the regulation of mitotic exit and cytokinesis. Polo-like kinase proteins acts by binding and phosphorylating proteins are that already phosphorylated on a specific motif recognized by the POLO box domains. Phosphorylates BORA, BUB1B/BUBR1, CCNB1, CDC25C, CEP55, ECT2, ERCC6L, FBXO5/EMI1, FOXM1, KIF20A/MKLP2, CENPU, NEDD1, NINL, NPM1, NUDC, PKMYT1/MYT1, KIZ, PPP1R12A/MYPT1, PRC1, RACGAP1/CYK4, SGO1, STAG2/SA2, TEX14, TOPORS, p73/TP73, TPT1, WEE1 and HNRNPU. Plays a key role in centrosome functions and the assembly of bipolar spindles by phosphorylating KIZ, NEDD1 and NINL. NEDD1 phosphorylation promotes subsequent targeting of the gamma-tubulin ring complex (gTuRC) to the centrosome, an important step for spindle formation. Phosphorylation of NINL component of the centrosome leads to NINL dissociation from other centrosomal proteins. Involved in mitosis exit and cytokinesis by phosphorylating CEP55, ECT2, KIF20A/MKLP2, CENPU, PRC1 and RACGAP1. Recruited at the central spindle by phosphorylating and docking PRC1 and KIF20A/MKLP2; creates its own docking sites on PRC1 and KIF20A/MKLP2 by mediating phosphorylation of sites subsequently recognized by the POLO box domains. Phosphorylates RACGAP1, thereby creating a docking site for the Rho GTP exchange factor ECT2 that is essential for the cleavage furrow formation. Promotes the central spindle recruitment of ECT2. Plays a central role in G2/M transition of mitotic cell cycle by phosphorylating CCNB1, CDC25C, FOXM1, CENPU, PKMYT1/MYT1, PPP1R12A/MYPT1 and WEE1. Part of a regulatory circuit that promotes the activation of CDK1 by phosphorylating the positive regulator CDC25C and inhibiting the negative regulators WEE1 and PKMYT1/MYT1. Also acts by mediating phosphorylation of cyclin-B1 (CCNB1) on centrosomes in prophase. Phosphorylates FOXM1, a key mitotic transcription regulator, leading to enhance FOXM1 transcriptional activity. Involved in kinetochore functions and sister chromatid cohesion by phosphorylating BUB1B/BUBR1, FBXO5/EMI1 and STAG2/SA2. PLK1 is high on non-attached kinetochores suggesting a role of PLK1 in kinetochore attachment or in spindle assembly checkpoint (SAC) regulation. Required for kinetochore localization of BUB1B. Regulates the dissociation of cohesin from chromosomes by phosphorylating cohesin subunits such as STAG2/SA2. Phosphorylates SGO1: required for spindle pole localization of isoform 3 of SGO1 and plays a role in regulating its centriole cohesion function. Mediates phosphorylation of FBXO5/EMI1, a negative regulator of the APC/C complex during prophase, leading to FBXO5/EMI1 ubiquitination and degradation by the proteasome. Acts as a negative regulator of p53 family members: phosphorylates TOPORS, leading to inhibit the sumoylation of p53/TP53 and simultaneously enhance the ubiquitination and subsequent degradation of p53/TP53. Phosphorylates the transactivation domain of the transcription factor p73/TP73, leading to inhibit p73/TP73-mediated transcriptional activation and pro-apoptotic functions. Phosphorylates BORA, and thereby promotes the degradation of BORA. Contributes to the regulation of AURKA function. Also required for recovery after DNA damage checkpoint and entry into mitosis. Phosphorylates MISP, leading to stabilization of cortical and astral microtubule attachments required for proper spindle positioning ( , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ). Together with MEIKIN, acts as a regulator of kinetochore function during meiosis I: required both for mono-orientation of kinetochores on sister chromosomes and protection of centromeric cohesin from separase- mediated cleavage (By similarity). Phosphorylates CEP68 and is required for its degradation. Regulates nuclear envelope breakdown during prophase by phosphorylating DCTN1 resulting in its localization in the nuclear envelope. Phosphorylates the heat shock transcription factor HSF1, promoting HSF1 nuclear translocation upon heat shock. Phosphorylates HSF1 also in the early mitotic period; this phosphorylation regulates HSF1 localization to the spindle pole, the recruitment of the SCF(BTRC) ubiquitin ligase complex induicing HSF1 degradation, and hence mitotic progression. Regulates mitotic progression by phosphorylating RIOK2. Through the phosphorylation of DZIP1 regulates the localization during mitosis of the BBSome, a ciliary protein complex involved in cilium biogenesis. { |UniProtKB:Q5F2C3, | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | }.

    Click to Show/Hide
HGNC ID
HGNC:9077
KEGG ID hsa:5347
Full List of the Ferroptosis Target of This Regulator and Corresponding Disease/Drug Response(s)
PLK1 can regulate the following target(s), and cause disease/drug response(s). You can browse detail information of target(s) or disease/drug response(s).
Browse Target
Browse Disease
Browse Drug
Unspecific Target [Unspecific Target]
In total 1 item(s) under this target
Experiment 1 Reporting the Ferroptosis Target of This Regulator [1]
Responsed Disease Lung cancer ICD-11: 2C25
Responsed Drug Tectoridin Investigative
Pathway Response Apoptosis hsa04210
Cell Process Cell ferroptosis
Cell apoptosis
Cell proliferation
In Vitro Model
A-549 cells Lung adenocarcinoma Homo sapiens CVCL_0023
Response regulation Tectoridin synergized with PLK1 inhibitor to suppress autophagy and ferroptosis but promoted caspase-3-mediated apoptosis in A549 (Lung adenocarcinoma) cells. Our findings highlight a potential drug target and the combination therapy strategy of PLK1 inhibitor and tectoridin for LUAD patients. In vitro experiments, we confirmed that tectoridin could inhibit the expression of PLK1.
Lung cancer [ICD-11: 2C25]
In total 1 item(s) under this disease
Experiment 1 Reporting the Ferroptosis-centered Disease Response [1]
Target Regulator Serine/threonine-protein kinase PLK1 (PLK1) Protein coding
Responsed Drug Tectoridin Investigative
Pathway Response Apoptosis hsa04210
Cell Process Cell ferroptosis
Cell apoptosis
Cell proliferation
In Vitro Model
A-549 cells Lung adenocarcinoma Homo sapiens CVCL_0023
Response regulation Tectoridin synergized with PLK1 inhibitor to suppress autophagy and ferroptosis but promoted caspase-3-mediated apoptosis in A549 (Lung adenocarcinoma) cells. Our findings highlight a potential drug target and the combination therapy strategy of PLK1 inhibitor and tectoridin for LUAD patients. In vitro experiments, we confirmed that tectoridin could inhibit the expression of PLK1.
Tectoridin [Investigative]
In total 1 item(s) under this drug
Experiment 1 Reporting the Ferroptosis-centered Drug Response [1]
Drug for Ferroptosis Suppressor
Response Target Unspecific Target
Responsed Disease Lung cancer ICD-11: 2C25
Pathway Response Apoptosis hsa04210
Cell Process Cell ferroptosis
Cell apoptosis
Cell proliferation
In Vitro Model
A-549 cells Lung adenocarcinoma Homo sapiens CVCL_0023
Response regulation Tectoridin synergized with PLK1 inhibitor to suppress autophagy and ferroptosis but promoted caspase-3-mediated apoptosis in A549 (Lung adenocarcinoma) cells. Our findings highlight a potential drug target and the combination therapy strategy of PLK1 inhibitor and tectoridin for LUAD patients. In vitro experiments, we confirmed that tectoridin could inhibit the expression of PLK1.
References
Ref 1 Tectoridin and PLK1 inhibitor synergistically promote the apoptosis of lung adenocarcinoma cells: Bioinformatic analysis of TCGA and TCMSP. Naunyn Schmiedebergs Arch Pharmacol. 2023 Oct;396(10):2417-2426. doi: 10.1007/s00210-023-02460-2. Epub 2023 Apr 4.